🔥 Đề thi HOT:

4124 người thi tuần này

Đề thi Cuối học kì 2 Toán 6 có đáp án (Đề 1)

13.4 K lượt thi 40 câu hỏi
2994 người thi tuần này

Đề kiểm tra Giữa kì 2 Toán 6 có đáp án (Mới nhất) - Đề 1

25.2 K lượt thi 11 câu hỏi
1106 người thi tuần này

Dạng 4: Trung điểm của đoạn thẳng có đáp án

7.8 K lượt thi 57 câu hỏi
780 người thi tuần này

31 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án

11.5 K lượt thi 31 câu hỏi
695 người thi tuần này

Đề thi Cuối học kì 2 Toán 6 có đáp án (Đề 2)

10 K lượt thi 13 câu hỏi
657 người thi tuần này

Dạng 4: Một số bài tập nâng cao về lũy thừa

13.8 K lượt thi 10 câu hỏi
570 người thi tuần này

Dạng 1: Thực hiện tính, viết dưới dạng lũy thừa

13.7 K lượt thi 45 câu hỏi

Danh sách câu hỏi:

Lời giải

Lời giải:

Những số tự nhiên lớn hơn 1 và có ít ước nhất là 2; 3; 5; 7; 11; 13; …

Sau bài học này ta sẽ biết các số trên được gọi là số nguyên tố.

Lời giải

Lời giải:

a) Ư(1) = {1};

Ư(2) = {1; 2};

Ư(3) = {1; 3};

Ư(4) = {1; 2; 4};

Ư(5) = {1; 5};

Ư(6) = {1; 2; 3; 6};

Ư(7) = {1; 7};

Ư(8) = {1; 2; 4; 8};

Ư(9) = {1; 3; 9};

Ư(10) = {1; 2; 5; 10}.

b) 

- Nhóm 1 chỉ có số 1.

- Nhóm 2 bao gồm 2; 3; 5; 7.

- Nhóm 3 bao gồm 4; 6; 8; 9; 10.

Lời giải

Lời giải:

a) Ta có: Ư(11) = {1; 11}; Ư(12) = {1; 2; 3; 4; 6; 12} và Ư(25) = {1; 5; 25}.

Số nguyên tố là 11 vì 11 lớn hơn 1 và chỉ có hai ước là 1 và chính nó.

Hợp số là: 12; 25 vì 12 có nhiều hơn 2 ước, còn 25 có 3 ước.

b) Không. Vì còn có số 0 và số 1 không phải là số nguyên tố và cũng không là hợp số.

Lời giải

Lời giải:

Phân tích số 60 ra thừa số nguyên tố theo cột dọc, ta được:

Phân tích số 60 ra thừa số nguyên tố theo cột dọc

Vậy 60 = 2.2.3.5 = 22.31.51.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

1139 Đánh giá

50%

40%

0%

0%

0%