Câu hỏi:

12/07/2024 817

Cho ΔABC, gọi D, E, F lần lượt là trung điểm của các cạnh AB, AC, BC; và M, N, P, Q theo thứ tự là trung điểm các đoạn thẳng DA, AE, EF, FD.

a) Chứng minh: EF là đường trung bình của tam giác ABC

b) Chứng minh: Các tứ giác DAEF; MNPQ là hình bình hành

c) Khi tam giác ABC vuông tại A thì các tứ giác DAEF; MNPQ là hình gì ? Chứng minh?

d) Tìm điều kiện của tam giác ABC để tứ giác MNPQ là hình vuông?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho ΔABC, gọi D, E, F lần lượt là trung điểm của các cạnh AB, AC, BC; và M, N, P, Q theo thứ tự là trung điểm các đoạn thẳng DA, AE, EF, FD. (ảnh 1)

a) Ta có E là trung điểm AC, F là trung điểm BC nên EF là đường trung bình ΔABC  

b) Ta có EF là đường trung bình ΔABC (cmt) EF//AB   &   EF=12AB mà D là trung điểm AB nên EF=ADEF//ADADFE là hình bình hành

Xét ΔADE có M, N lần lượt là trung điểm AD, AE MN//DE  &   MN=12DE

Cmtt PQ//DE   &   PQ=12DEPQ=MN   &  PQ//MNPQMN là hình bình hành

c) Khi ΔABC vuông tại A thì A^=90°Hình bình hành DAEF có A^=90° nên DAEF là hình chữ nhật.

Khi A^=90° thì DAEF là hình chữ nhật AF=DE  

Mặt khác, theo tính chất đường trung bình ta có MN=12DE,NP=12AF khi đó MN = NP

=> MNPQ là hình bình hành có MN = NP nên MNPQ là hình thoi

d) ΔABC vuông tại A thì MNPQ là hình thoi. Để MNPQ là hình vuông thì MNNP

MN // DE, NP // AF (tính chất đường trung bình)

Nên DEAF mà DE // BC (tính chất đường trung bình)AFBC

Suy ra ΔABC vuông tại A có AF là vừa đường trung tuyến, vừa đường cao

Nên ΔABC vuông cân tại A

Vậy ΔABC vuông cân tại A thì MNPQ là hình vuông.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD Trên đường chéo BD lấy điểm E và K sao cho BE = DK
a) Chứng minh rằng AKCE là hình bình hành
b) Hình bình hành ABCD có điều kiện gì để AKCE là hình thoi
c) Gọi M là giao điểm của AK và CD. Xác định vi trí của điểm K để M là trung điểm của CD

Xem đáp án » 12/07/2024 6,448

Câu 2:

Cho ΔABC vuông tại A AB>AC, M là trung điểm của AB,P là điểm nằm trong ΔABC sao cho MPAB. Trên tia đối của tia MP lấy điểm Q sao cho MP = MQ

a) Chứng minh: tứ giác APBQ là hình thoi.

b) Qua C vẽ đường thẳng song song với BP cắt tia QP tại E. Chứng minh tứ giác ACEQ là hình bình hành.

c) Gọi N là giao điểm của PE và BC. Chứng minh: AC = 2MN

d) Cho MN=3cm,AN=5cm. Tính chu vi ΔABC.

Xem đáp án » 12/07/2024 4,071
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua