Câu hỏi:

14/08/2022 8,153

Trong không gian Oxyz, phương trình mặt cầu có tâm I(-1; -2; 3) và bán kính R = 2 là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Phương trình mặt cầu có tâm I(-1; -2; 3) và bán kính R = 2 là

(S): (x + 1)2 + (y + 2)2 + (z - 3)2 = 4.

Vậy ta chọn phương án D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Trong không gian Oxyz, phương trình mặt phẳng đi qua hai điểm A(-1; 2; 3), B(1; 4; 2) và vuông góc với mặt phẳng (P): x - y + 2z + 1 = 0 là

Lời giải

Đáp án đúng là: D

Vectơ pháp tuyến của mặt phẳng (P): x - y + 2z + 1 = 0 là nP=1;1;2

Với A(-1; 2; 3), B(1; 4; 2) ta có: AB=2;2;1

Þ AB;n =2112;1221;2211

Þ AB;n  = (3; -5; -4)

Mặt phẳng chứa hai điểm A, B và vuông góc với mặt phẳng (P) thì có vectơ pháp tuyến vuông góc với nP=1;1;2AB=2;2;1 nên có vectơ pháp tuyến là:

n=AB;n = (3; -5; -4).

Phương trình mặt phẳng đi qua A(-1; 2; 3) và có vectơ pháp tuyến n=3;5;4

3(x + 1) - 5(y - 2) - 4(z - 3) = 0

Û 3x - 5y - 4z + 25 = 0

Vậy ta chọn phương án D.

Câu 2

Trong không gian Oxyz, phương trình nào dưới đây là phương trình mặt cầu?

Lời giải

Đáp án đúng là: C

Xét phương án A: x2 + y2 - z2 - 2x - 2y - 2z - 1 = 0

Û (x2 - 2x + 1) + (y2 - 2y + 1) - (z2 + 2z + 1) = 2

Û (x - 1)2 + (y - 1)2 - (z + 1)2 = 2

Vậy phương trỉnh trên không là phương trình mặt cầu

Xét phương án B: x2 + y2 + 2z2 - 2x - 2y - 2z - 1 = 0

Û (x2 - 2x + 1) + (y2 - 2y + 1) + (2z2 - 2z + 1) = 4

Û (x - 1)2 + (y - 1)2 + (2z2 - 2z + 1) = 4

Vậy phương trỉnh trên không là phương trình mặt cầu

Xét phương án C: x2 + y2 + z2 - 2x - 2y - 2z - 1 = 0

Û (x2 - 2x + 1) + (y2 - 2y + 1) + (z2 - 2z + 1) = 4

Û (x - 1)2 + (y - 1)2 + (z - 1)2 = 4

Vậy phương trỉnh trên là phương trình mặt cầu tâm I(1; 1 ; 1) và bán kính R = 2.

Xét phương án D: x2 + y2 + z2 - 2x - 2y - 2z + 3 = 0

Û (x2 - 2x + 1) + (y2 - 2y + 1) + (z2 - 2z + 1) = 0

Û (x - 1)2 + (y - 1)2 + (z - 1)2 = 0

Vậy phương trỉnh trên không là phương trình mặt cầu do R = 0.

Vậy ta chọn phương án C.

Nhận xét nhanh:

Trong 4 phương án ta thấy:

• Phương án C có dạng phương trình tổng quát với hệ số của x2, y2, z2 đều bằng 1 và hệ số tự do d = –1 < 0 nên chắc chắn là phương trình mặt cầu.

• Phương án A không có dạng phương trình tổng quát do có hệ số của z2 bằng –1 nên đây không phải là phương trình mặt cầu.

• Phương án B không có dạng phương trình tổng quát do có hệ số của z2 (bằng 2) khác hệ số của x2, y2 (bằng 1) nên đây không phải là phương trình mặt cầu.

• Phương án D có dạng phương trình tổng quát và có R=a2+b2+c2d=12+12+123=0

Do đó đây không phải là phương trình mặt cầu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay