Câu hỏi:

17/08/2022 423

Cho ∆ABC vuông tại A, biết AB = 10 cm. Trên đường thẳng AC, lấy hai điểm E và F sao cho AE = 3 cm, AF = 5 cm. So sánh CA, CB, CE và CF.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Media VietJack

Ta thấy CA ⊥ AB tại A.

Do đó CA là đường vuông góc kẻ từ điểm C đến đường thẳng AB và BC là đường xiên kẻ từ điểm C đến đường thẳng AB.

Suy ra CA < CB  (1).

Ta có E ∈ AC và AE = 3 cm.

Suy ra CE = AC – AE = AC – 3.

Do đó CE < AC  (2).

Ta có F ∈ AC và AF = 5 cm.

Suy ra CF = AC – AF = AC – 5 = (AC – 3) – 2.

Mà CE = AC – AE = AC – 3 (chứng minh trên).

Do đó CF = CE – 2

Suy ra CF < CE  (3).

Từ (1), (2), (3), ta suy ra CF < CE < CA < CB.

Vậy ta chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Media VietJack

Ta có NE = MN (giả thiết).

Suy ra ∆MNE cân tại N.

Do đó NME^=NEM^                 (1).

Vì ∆MNP vuông tại A nên NMP^=90°.

Suy ra NME^+EMF^=90°        (2).

Từ (1), (2), ta suy ra NEM^+EMF^=90°  (*).

∆MHE vuông tại H: HME^+NEM^=90°  (**).

Từ (*), (**), ta suy ra EMF^=HME^.

Xét ∆HME và ∆FME, có:

ME là cạnh chung.

EMF^=HME^ (chứng minh trên).

MH = MF (giả thiết).

Do đó ∆HME = ∆FME (c.g.c).

Suy ra MHE^=MFE^ (cặp góc tương ứng).

MHE^=90° (do MH ⊥ HE).

Suy ra MFE^=90°.

Do đó EF ⊥ MF hay EF ⊥ MP.

Khi đó ta có EF là đường vuông góc kẻ từ điểm E đến đường thẳng MP.

Do đó đoạn thẳng EF là khoảng cách từ E đến đường thẳng MP.

Vậy ta chọn đáp án B.

Lời giải

Đáp án đúng là: A

Đoạn thẳng AB là đường vuông góc kẻ từ O đến đường thẳng BC.

Các đoạn thẳng AD, AE, AC là đường xiên kẻ từ A đến đường thẳng BC.

Do đó đoạn AB ngắn nhất.

Vậy ta chọn đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay