Câu hỏi:

18/08/2022 157

Nghiệm của phương trình \[\sqrt {x - 2} + \sqrt {x + 3} = 5\] thuộc khoảng nào trong các khoảng sau

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Bình phương hai vế của phương trình đã cho ta có

x – 2 + x + 3 + 2\(\sqrt {(x - 2)(x + 3)} \) = 25

\( \Rightarrow \) \(\sqrt {{x^2} + x - 6} \) = 12 – x(1)

Bình phương hai vế của phương trình (1) ta có

x2 + x – 6 = (12 – x)2

\( \Rightarrow \) x2 + x – 6 = x2 – 24x + 144

\( \Rightarrow \) 25x – 150 = 0

\( \Rightarrow \) x = 6

Thay nghiệm trên vào phương trình ta thấy x = 6 thoả mãn

Vậy nghiệm của phương trình thuộc khoảng (3; 7)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Để bất phương trình x2 + 2(m – 2)x + 2m – 1 > 0 có nghiệm với mọi x \( \in \) thì \(\left\{ \begin{array}{l}a = 1 > 0\\\Delta ' < 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\{(m - 2)^2} - 2m + 1 < 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\{m^2} - 6m + 5 < 0\end{array} \right.\)

Xét f(m) = m2 – 6m + 5 có ∆ = 16 > 0 hai nghiệm phân biệt là m = 1 ; m = 5 và a = 1 > 0

Ta có bảng xét dấu

m

–∞               1                  5                 + ∞

f(m)

           +       0                0       +

Suy ra để f(m) < 0 thì 1 < m < 5.

Vậy với 1 < m < 5 thì bất phương trình x2 + 2(m – 2)x + 2m – 1 > 0 có nghiệm với mọi x \( \in \) ℝ.

Lời giải

Đáp án đúng là: C

\[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7 \Leftrightarrow {x^2} - 2x - 3 + 3\sqrt {{x^2} - 2x - 3} - 4 = 0\]

Đặt \[\sqrt {{x^2} - 2x - 3} = t(t \ge 0)\] ta có phương trình t2 + 3t – 4 =0\[ \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 4\end{array} \right.\]

Kết hợp với điều kiện của t ta có t = 1 thỏa mãn

Với t = 1 \[ \Rightarrow \sqrt {{x^2} - 2x - 3} = 1 \Leftrightarrow {x^2} - 2x - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 + \sqrt 5 \\x = 1 - \sqrt 5 \end{array} \right.\]

Thay lần lượt các nghiệm vào phương trình ta có \[x = 1 + \sqrt 5 ;x = 1 - \sqrt 5 \] đều thỏa mãn

Vậy tích các nghiệm của phương trình S = – 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP