Câu hỏi:

18/08/2022 1,208

Cho ∆ABC vuông tại A có C^=30°. Kẻ AH ⊥ BC tại H và tia phân giác AD của HAC^ (D ∈ BC). Trên cạnh AC lấy điểm E sao cho AE = AH. Trên tia đối của tia HA lấy điểm F sao cho HF = EC. Khẳng định nào sau đây đúng nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Media VietJack

Ta xét từng đáp án:

Đáp án A:

Xét ∆ADH và ∆ADE, có:

AH = AE (giả thiết).

HAD^=DAE^ (do AD là phân giác của HAC^).

AD là cạnh chung.

Do đó ∆ADH = ∆ADE (c.g.c)

Suy ra đáp án A đúng.

Đáp án B:

∆ADH = ∆ADE (chứng minh trên).

Suy ra AHD^=AED^ (cặp góc tương ứng).

AHD^=90° (do AH ⊥ HD).

Do đó AED^=90°.

Khi đó ta có DE ⊥ AE hay DE ⊥ AC.

Do đó đáp án B đúng.

Đáp án C:

Ta có AH = AE (giả thiết) và HF = EC (giả thiết).

Suy ra AH + HF = AE + EC.

Do đó AF = AC.

Khi đó ta có ∆ACF cân tại A                         (1).

Vì ∆AHC vuông tại H nên HAC^+HCA^=90°.

Do đó HAC^=90°HCA^=90°30°=60°  (2).

Từ (1), (2), ta suy ra ∆ACF là tam giác đều.

Do đó đáp án C đúng.

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Media VietJack

• Xét ∆ABC và ∆ADE, có:

AB = AD (giả thiết),

BAC^=DAE^ (hai góc đối đỉnh),

AC = AE (giả thiết).

Do đó ∆ABC = ∆ADE (c.g.c)

Suy ra BC = DE (cặp cạnh tương ứng).

Vì vậy đáp án A đúng.

• Xét ∆ABD có DA ⊥ AB (do ∆ABC vuông tại A).

Suy ra BAD^=90°.

Do đó ∆ABD vuông tại A.

Lại có AB = AD (giả thiết).

Suy ra ∆ABD vuông cân tại A.

Do đó đáp án B đúng.

• Chứng minh tương tự, ta được ∆ACE vuông cân tại A.

Suy ra BDA^=ACE^=45°.

Mà hai góc này ở vị trí so le trong.

Do đó BD // CE.

Vì vậy đáp án C đúng.

Vậy ta chọn phương án D.

Câu 2

Lời giải

Đáp án đúng là: B

Điểm cách đều ba đỉnh của tam giác là giao điểm của ba đường trung trực của tam giác đó.

Trọng tâm là giao điểm của ba đường trung tuyến của một tam giác.

Điểm cách đều ba cạnh của tam giác là giao điểm của ba đường phân giác của tam giác đó.

Trực tâm là giao điểm của ba đường cao của một tam giác.

Vậy ta chọn phương án B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP