Câu hỏi:
18/08/2022 833Cho ∆ABC vuông tại A có . Kẻ AH ⊥ BC tại H và tia phân giác AD của (D ∈ BC). Trên cạnh AC lấy điểm E sao cho AE = AH. Trên tia đối của tia HA lấy điểm F sao cho HF = EC. Khẳng định nào sau đây đúng nhất?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta xét từng đáp án:
Đáp án A:
Xét ∆ADH và ∆ADE, có:
AH = AE (giả thiết).
(do AD là phân giác của ).
AD là cạnh chung.
Do đó ∆ADH = ∆ADE (c.g.c)
Suy ra đáp án A đúng.
Đáp án B:
∆ADH = ∆ADE (chứng minh trên).
Suy ra (cặp góc tương ứng).
Mà (do AH ⊥ HD).
Do đó .
Khi đó ta có DE ⊥ AE hay DE ⊥ AC.
Do đó đáp án B đúng.
Đáp án C:
Ta có AH = AE (giả thiết) và HF = EC (giả thiết).
Suy ra AH + HF = AE + EC.
Do đó AF = AC.
Khi đó ta có ∆ACF cân tại A (1).
Vì ∆AHC vuông tại H nên .
Do đó (2).
Từ (1), (2), ta suy ra ∆ACF là tam giác đều.
Do đó đáp án C đúng.
Vậy ta chọn đáp án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC vuông tại A (AB < AC). Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. Khẳng định nào sau đây đúng nhất?
Câu 2:
Câu 4:
Cho ∆ABC, điểm M thuộc đoạn thẳng BC sao cho BM = 2MC. Trên tia đối của tia CA, lấy điểm D sao cho CD = CA. Gọi E là giao điểm của AM và BD. Khẳng định nào sau đây sai?
Câu 5:
Cho một tam giác cân có độ dài hai cạnh (không bằng nhau) là 2 cm và 5 cm. Chu vi của tam giác đó là:
Câu 6:
Cho ∆ABC vuông cân tại A. Trên cạnh AB lấy điểm D bất kì (D ≠ A, B), trên tia đối của tia AC, lấy điểm E sao cho AD = AE. Khẳng định nào sau đây đúng nhất?
Câu 7:
Qua trung điểm H của đoạn thẳng BC, kẻ đường thẳng vuông góc với BC, trên đường thẳng vuông góc đó lấy hai điểm A và I. Nối CA, AB, IB, IC. Phát biểu nào sau đây là đúng nhất:
về câu hỏi!