Câu hỏi:
19/08/2022 138Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x - 1)2 + (y + 2)2 + (z - 3)2 = 12. Gọi (P) là mặt phẳng đi qua hai điểm và cắt mặt cầu (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là hình tròn (C) có thể tích lớn nhất. Biết mặt phẳng (P) có phương trình dạng 2x + by + cz + d = 0. Khi đó giá trị biểu thức b2 + c2 + d2 bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Mặt cầu (S): (x - 1)2 + (y + 2)2 + (z - 3)2 = 12 có tâm I(1; -2; 3) và bán kính
+)
+) Mặt phẳng (P) có phương trình dạng 2x + by + cz + d = 0 có véc-tơ pháp tuyến là
AB thuộc mặt phẳng (P) nên véc-tơ pháp tuyến của (P) vuông góc với
Ta suy ra được hệ phương trình
Từ đó suy ra (P) có dạng 2x + by - z + 11 = 0
Khối nón có đỉnh là tâm của (S), đáy là hình tròn (C) có thể tích là
đạt GTLN khi IH(12 - IH2) đạt GTLN
Ta có:
Với x > 0, xét hàm số f (x) = x(12 - x2) = 12x - x3
Þ f '(x) = 12 - 3x2 = 0 Û x2 = 4 Þ x = 2 (Do x > 0)
Vẽ được BBT của hàm số f (x) = x(12 - x2) trên (0; +¥)
Dựa vào BBT nên suy ra f (x) đạt GTLN bằng 16 khi x = 2
Nên suy ra IH(12 - IH2) đạt GTLN khi IH = 2
Þ |5 - b|2 = b2 + 5
Û 25 - 10b + b2 = b2 + 5
Û 10b = 20 Û b = 2
Từ đó suy ra b2 + c2 + d2 = 22 + (-1)2 + 112 = 126.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số y = f (x), y = g (x) liên tục trên [a; b] và hai đường thẳng x = a, x = b (a < b) được tính theo công thức
Câu 3:
Cho số phức z thỏa mãn . Biết tập hợp các điểm biểu diễn số phức w = (2 - i)z - 3i + 5 là một đường tròn. Xác định tâm I và bán kính R của đường tròn đó.
Câu 4:
Cho số phức z thỏa mãn . Tổng phần thực và phần ảo của số phức bằng
Câu 6:
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 3x2 - 6x, trục hoành và hai đường thẳng x = 2, x = 4 bằng
Câu 7:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 + 2x - 4y + 6z - 2 = 0. Tọa độ tâm I của mặt cầu (S) là
về câu hỏi!