Câu hỏi:

12/07/2024 749

Biết rằng tam giác ABC bằng tam giác MNP, BAC^+MNP^=115°. Hãy tính số đo các góc ACB^,MPN^.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

GT

∆ABC = ∆MNP , BAC^+MNP^=115°

KL

Tính ACB^,MPN^

 

Vì ∆ABC = ∆MNP nên suy ra ABC^=MNP^ (hai góc tương ứng). Do tổng ba góc trong tam giác ABC bằng 180° nên ta có

BAC^+ABC^+ACB^=180°

 ACB^=180°BAC^ABC^=180°BAC^MNP^=180°115°=65°

Lại vì ∆ABC = ∆MNP nên ta suy ra MPN^=ACB^=65° (các góc tương ứng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là C

Khi ∆ABC = ∆MNP thì ta có các cặp cạnh tương ứng là:

AB và MN, AC và MP, BC và NP

Do đó đáp án cần chọn là C

Lời giải

a) Hai tam giác ABD và tam giác CBD có:

AB = BC (theo giả thiết).

AD = CD (theo giả thiết)

BD chung.

Do đó ∆ABD = ∆CBD (c – c – c).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP