Câu hỏi:

22/08/2022 6,133

Trong không gian Oxyz, cho hai điểm A (1; -1; 2), B(1; 3; 4). Tìm tọa độ điểm M trên trục hoành Ox sao cho biểu thức P = MA2 + MB2 đạt giá trị nhỏ nhất.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

M là điểm nằm trên trục hoành nên suy ra M(m; 0; 0)

Ta có:

P = MA2 + MB2

= (m -1)2 + 12 + (-2)2 + (m - 1)2 + (-3)2 + (-4)2

= 2(m -1)2 + 30 đạt GTNN

Vậy suy ra Pmin = 30 Û m - 1 = 0 Û m = 1

Vậy suy ra M(1; 0; 0).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính diện tích phần hình phẳng gạch chéo (tam giác cong OAB) trong hình vẽ bên.

Media VietJack

Xem đáp án » 22/08/2022 14,090

Câu 2:

Biết F (x) là một nguyên hàm của hàm số f (x) = e3x và F (0) = 0. Giá trị của F (ln3) bằng

Xem đáp án » 22/08/2022 11,777

Câu 3:

Trong không gian Oxyz, cho mặt phẳng (P) : x - 2y + 2z - 5 = 0 và hai điểm A(-3; 0; 1), B(1; -1; 3). Tìm phương trình của đường thẳng ∆ đi qua A và song song với (P) sao cho khoảng cách từ B đến đường thẳng ∆ là nhỏ nhất.        

Xem đáp án » 22/08/2022 6,924

Câu 4:

Diện tích hình phẳng giới hạn bởi hai đường y = x2 + 1 và y = 2x + 1 bằng

Xem đáp án » 21/08/2022 5,326

Câu 5:

Trong không gian Oxyz. Điểm nào sau đây thuộc mặt phẳng (P): -2x + y - 5 = 0?

Xem đáp án » 20/08/2022 5,317

Câu 6:

Trong không gian Oxyz, cho mặt cầu (S) có tâm thuộc mặt phẳng (P): x + 2y + z - 7 = 0 và đi qua hai điểm A(1; 2; 1), B(2; 5; 3). Bán kính nhỏ nhất của mặt cầu (S) bằng      

Xem đáp án » 22/08/2022 4,621

Bình luận


Bình luận