Câu hỏi:
22/08/2022 5,035Trong không gian Oxyz, cho hai điểm A (1; -1; 2), B(1; 3; 4). Tìm tọa độ điểm M trên trục hoành Ox sao cho biểu thức P = MA2 + MB2 đạt giá trị nhỏ nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
M là điểm nằm trên trục hoành nên suy ra M(m; 0; 0)
Ta có:
P = MA2 + MB2
= (m -1)2 + 12 + (-2)2 + (m - 1)2 + (-3)2 + (-4)2
= 2(m -1)2 + 30 đạt GTNN
Vậy suy ra Pmin = 30 Û m - 1 = 0 Û m = 1
Vậy suy ra M(1; 0; 0).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính diện tích phần hình phẳng gạch chéo (tam giác cong OAB) trong hình vẽ bên.
Câu 2:
Biết F (x) là một nguyên hàm của hàm số f (x) = e3x và F (0) = 0. Giá trị của F (ln3) bằng
Câu 3:
Trong không gian Oxyz, cho mặt phẳng (P) : x - 2y + 2z - 5 = 0 và hai điểm A(-3; 0; 1), B(1; -1; 3). Tìm phương trình của đường thẳng ∆ đi qua A và song song với (P) sao cho khoảng cách từ B đến đường thẳng ∆ là nhỏ nhất.
Câu 4:
Trong không gian Oxyz. Điểm nào sau đây thuộc mặt phẳng (P): -2x + y - 5 = 0?
Câu 5:
Diện tích hình phẳng giới hạn bởi hai đường y = x2 + 1 và y = 2x + 1 bằng
Câu 6:
Trong mặt phẳng phức Oxy, gọi M là điểm biểu diễn số phức z = 4 - 3i. Tính độ dài đoạn thẳng OM.
về câu hỏi!