Cho bất phương trình log7(x2 +2x + 2) + 1 > log7(x2 + 6x + 5 + m). Có tất cả bao nhiêu giá trị nguyên của m để bất phương trình trên có tập nghiệm chứa khoảng (1; 3)?
Cho bất phương trình log7(x2 +2x + 2) + 1 > log7(x2 + 6x + 5 + m). Có tất cả bao nhiêu giá trị nguyên của m để bất phương trình trên có tập nghiệm chứa khoảng (1; 3)?
Câu hỏi trong đề: Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
Đáp án đúng là A
Bất phương trình
,∀ x ∈ (1; 3) (*)
Với f (x) = −x2 – 6x – 5; g(x) = 6x2 + 8x + 9. Xét sự biến thiên của hai hàm số f (x) và g (x)
+ f '(x) = −2x – 6 < 0, ∀ x ∈ (1; 3) f (x) luôn nghịch biến trên khoảng (1; 3)
f (x) = f (1) = –12
+g'(x) = 12x + 8 > 0, ∀ x ∈ (1; 3) g (x) luôn đồng biến trên khoảng (1; 3)
g (x) = g (1) = 23
Lúc này (*)
Khi đó –12≤ m≤ 23. Mà m∈ ℤ nên m ∈ {–12; –11; –10;…..; 22; 23}
Vậy có tất cả 36 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
ĐkXĐ: x – 1 > 0 x > 1
Ta có: log2(x − 1) < 3
x – 1 < 23
x < 8 + l
x < 9
Kết hợp với điều kiện ta có tập nghiệm của bất phương trình là: S = (1; 9).
Lời giải
Đáp án đúng là C
Hàm số mũ: y = ax (a > 0 và a ≠ 1) nghịch biến trên ℝ khi 0 < a < 1.
Ta có:
+) y = và 2 > 1 nên y = là hàm đồng biến trên ℝ.
+) nên y = là hàm đồng biến trên ℝ.
+) nên y = là hàm nghịch biến trên ℝ.
+) nên y = là hàm đồng biến trên ℝ.
Vậy nên hàm số nghịch biến trên ℝ là y = .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.