Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 – 2x + 6y – 8z + 1 = 0. Tọa độ tâm I và bán kính R của mặt cầu (S) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 – 2x + 6y – 8z + 1 = 0. Tọa độ tâm I và bán kính R của mặt cầu (S) là:
Câu hỏi trong đề: Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
Đáp án đúng là C
Ta có: x2 + y2 + z2 – 2x + 6y – 8z + 1 = 0
x2 – 2x + 1 + y2 + 6y + 9 + z2 – 8z + 16 + 1 – 1 – 9 – 16 = 0
(x – 1)2 + (y + 3)2 + (z – 4)2 = 25 (1)
Từ (1) suy ra mặt cầu (S) có tâm I (1; –3; 4) và bán kính R = 5.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là B
Trong không gian Oxyz, một đường thẳng được xác định khi biết một điểm nó đi qua và một vectơ chỉ phương (VTCP). Giả sử đường thẳng d đi qua điểmM(x0; y0; z0)và có vectơ chỉ phương là = (a; b; c) thì d sẽ có phương trình chính tắc là
Vậy nên vectơ chỉ phương của đường thẳng d là: = (1; 3; –2).
Lời giải
Đáp án đúng là B
Ta có: Hoành độ giao điểm của đồ thị hàm số y = x2 – x và trục hoành là
x2 – x = 0
x. (x – 1) = 0
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 – x và trục hoành là
S =
Với x ∈ [0; 1] thì x2 – x < 0 nên | x2 – x| = –x2 + x
Do đó: S = =
=
= -+
=
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.