Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 – 4x + 10y – 2z – 6 = 0. Cho m là số thực thỏa mãn giao tuyến của hai mặt phẳng lần lượt có phương trình y = m và x + z – 3 = 0 tiếp xúc với mặt cầu (S). Tích tất cả các giá trị mà m có thể nhận được bằng:
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 – 4x + 10y – 2z – 6 = 0. Cho m là số thực thỏa mãn giao tuyến của hai mặt phẳng lần lượt có phương trình y = m và x + z – 3 = 0 tiếp xúc với mặt cầu (S). Tích tất cả các giá trị mà m có thể nhận được bằng:
Câu hỏi trong đề: Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
Đáp án đúng là B
Mặt cầu (S): x2 + y2 + z2 – 4x + 10y – 2z – 6 = 0 có tâm I (2; –5; 1) và bán kính R = 6
Đặt (P): y = m và (Q): x + z – 3 = 0
Gọi d = (P) ⋂ (Q)
Chọn A (0; m; 3) ∈ (P) ⋂ (Q) và B (1; m; 2) ∈ (P) ⋂ (Q)
Ta có: AB qua A (0; m; 3) và có VTCP = (1; 0; –1)
= (–2; m + 5; 2)
| , | = (–m – 5; 0; –m – 5)
Đường thẳng d tiếp xúc với mặt cầu (S) khi và chỉ khi
d(I, d) = R = 6
=6
m2 + 10m – 11 = 0
Vậy tích m1.m2 = – 11.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là B
Trong không gian Oxyz, một đường thẳng được xác định khi biết một điểm nó đi qua và một vectơ chỉ phương (VTCP). Giả sử đường thẳng d đi qua điểmM(x0; y0; z0)và có vectơ chỉ phương là = (a; b; c) thì d sẽ có phương trình chính tắc là
Vậy nên vectơ chỉ phương của đường thẳng d là: = (1; 3; –2).
Lời giải
Đáp án đúng là B
Ta có: Hoành độ giao điểm của đồ thị hàm số y = x2 – x và trục hoành là
x2 – x = 0
x. (x – 1) = 0
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 – x và trục hoành là
S =
Với x ∈ [0; 1] thì x2 – x < 0 nên | x2 – x| = –x2 + x
Do đó: S = =
=
= -+
=
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.