Câu hỏi:

12/07/2024 1,950

Tính góc giữa hai mặt phẳng (SAB) và (SCD).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Gọi M là trung điểm AD

Suy ra tứ giác ABCM là hình vuông

Do đó AC ^ BM.

Ta thấy BC // MD, BC = MD = 2a

Suy ra tứ giác BCDM là hình bình hành nên BM // CD.

Từ đó Þ CD ^ AC và ta có CD ^ SA (do SA ^ (ABCD)) nên CD ^ (SAC).

Trong mặt phẳng (SAC) dựng AK ^ SC tại K, chứng minh được AK ^ (SCD) (3).

Lại có AD ^ SA, AD ^ AB Þ AD ^ (SAB) (4).

Từ (3) và (4) Þ [(SAB),(SCD)] = (AK,AD) = \(\widehat {KAD}.\)

Ta có AC = \(2a\sqrt 2 \) và SA = \(2a\sqrt 2 \) Þ AK = 2a.

Trong tam giác vuông AKD vuông tại K ta có:

cos\(\widehat {KAD}\)= \(\frac{{AK}}{{AD}}\)= \(\frac{1}{2}\)Þ \(\widehat {KAD}\)= 60°.

Vậy [(SAB),(SCD)] = 60°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Theo định nghĩa, ta có: \[f'(1) = \mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}}\] Þ f'(1) = 2.

Lời giải

Hướng dẫn giải

Trong mặt phẳng (SAB) dựng AH ^ SB tại H, chứng minh được AH ^ (SBC).

Từ đó d[A,(SBC)] = AH.

Trong tam giác SAB ta có:

AH = \(\frac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }}\)= \(\frac{{\left( {2a\sqrt 2 } \right).2a}}{{\sqrt {{{\left( {2a\sqrt 2 } \right)}^2} + {{\left( {2a} \right)}^2}} }} = \frac{{2a\sqrt 6 }}{3}.\)

Vậy d[A,(SBC)] = \(\frac{{2a\sqrt 6 }}{3}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP