Câu hỏi:
12/07/2024 2,089
Cho hình chóp S.ABCD có đáy ABCD là hình vuông với cạnh AB = \(a\sqrt 2 \), SA vuông góc với mặt phẳng đáy và SA = 3a.

Chứng minh CD ^ (SAD).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông với cạnh AB = \(a\sqrt 2 \), SA vuông góc với mặt phẳng đáy và SA = 3a.

Chứng minh CD ^ (SAD).
Câu hỏi trong đề: Bộ 7 Đề thi Toán 11 Học kì 2 có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có SA ^ (ABCD) mà CD Ì (ABCD) Þ SA ^ CD (1)
ABCD là hình vuông Þ CD ^ AD (2)
Từ (1) và (2) Þ CD ^ (SAD)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có AC là hình chiếu vuông góc của SC trên mặt phẳng (ABCD) Þ \(\widehat {SCA}\) là góc giữa SC và mặt phẳng (ABCD)
Ta có AC = 2a (đường chéo hình vuông ABCD)
Tan \(\widehat {SCA}\)= \(\frac{{SA}}{{AC}} = \frac{{3a}}{{2a}} = \frac{3}{2}\) Þ \(\widehat {SCA}\)= 56°18’
Lời giải
Hướng dẫn giải
Đáp án đúng là: D

Ta có SA ^ (ABC) Þ AC là hình chiếu của SC lên (ABC)
Þ [SC,(ABC)] = \(\widehat {SCA}.\)
Tan\(\widehat {SCA}\)= \(\frac{{SA}}{{AC}} = \frac{a}{a} = 1 \Rightarrow \widehat {SCA} = 45^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.