Câu hỏi:

12/07/2024 2,330

b) Tìm giá trị của tham số m đ phương trình (1) có hai nghiệm phân biệt x1, x2 sao cho biểu thức A=2018+3x1x2x12x22  đạt giá trị nhỏ nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Phương trình có 2 nghiệm phân biệt Δ>9m+6>0m>6

Áp dụng định lí Vi-ét, ta có: x1+x2=2m+2x1x2=m2+3m2

A=2018+3x1x2x12x22=2018+5x1x2x1+x22=m2m+1992=m122+79674

Vì nên m122+7967479674,m

m1220,mVậy giá trị nhỏ nhất của A là 79674 đạt được khi m=12 (thỏa mãn m>6)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) Tìm m để phương trình có 2 nghiệm dương.

Δ0P>0S>05242m302m3>05>0378m0m>32m378m>3232<m378

Vậy với 32<m378thì phương trình có 2 nghiệm dương.

Lời giải

Áp dụng định lí Vi-ét, ta có:A=x1+x2=23;x1x2=23

Ta có: B=x1+x222x1x2=2322.23=169

Vậy A=23B=169

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP