Câu hỏi:

13/07/2024 5,126

Hai vòi nước cùng chảy vào một bể nước cạn (không có nước) trong 1 giờ 12 phút thì đầy bể. Nếu vòi thứ nhất chảy trong 30 phút và vòi thứ hai chảy trong 1 giờ thi được \(\frac{7}{{12}}\) bể. Hỏi nếu mỗi vòi chảy một mình thi bao lâu đầy bể?

(Thi thử THPT Lương Thế Vinh - Hà Nội năm học 2018-2019)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đổi 1 giờ 12 phút\[ = 1\frac{1}{5} = \frac{6}{5}\left( h \right),\] 30 phút\[ = \frac{1}{2}\left( h \right).\]

Gọi thời gian vòi thứ nhất và vòi thứ hai chảy một mình đầy bể lần lượt là x, y (giờ).

Điều kiện: \(x > \frac{6}{5},y > \frac{6}{5}\)

Trong 1 giờ:

+ Vòi thứ nhất chảy được \(\frac{1}{x}\) bể.

+ Vòi thứ hai chảy được \(\frac{1}{y}\) bể.

+ Cả hai vòi chảy được \(1:\frac{6}{5} = \frac{5}{6}\) bể.

Suy ra phương trình: \(\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\) (1)

Trong 30 phút, vòi thứ nhất chảy được \(\frac{1}{x}:2 = \frac{1}{{2x}}\) bể.

Vì nếu vòi thứ nhất chảy trong 30 phút và vòi thứ hai chảy trong 1 giờ thì được \(\frac{7}{{12}}\) bể, nên

\(\frac{1}{{2x}} + \frac{1}{y} = \frac{7}{{12}}\)    (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\\\frac{1}{{2x}} + \frac{1}{y} = \frac{7}{{12}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{x} = \frac{1}{2}\\\frac{1}{y} = \frac{1}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\) (thỏa mãn).

Vậy thời gian vòi thứ nhất chảy một mình đầy bể là 2 giờ, thời gian vòi thứ hai chảy một mình đầy bể là 3 giờ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Để chuẩn bị cho một chuyến đi đánh bắt cá ở Hoàng Sa, hai ngư dân đảo Lý Sơn cần chuyển một số lương thực, thực phẩm lên tàu. Nếu người thứ nhất chuyển xong một nửa số lương thực, thực phẩm; sau đó người thứ hai chuyển hết số còn lại lên tàu thì thời gian người thứ hai hoàn thành lâu hơn người thứ nhất là 3 giờ. Nếu cả hai cùng làm chung thì thời gian chuyển hết số lương thực, thực phẩm lên tàu là \(\frac{{20}}{7}\) giờ. Hỏi nếu làm riêng một mình thì mỗi người chuyển hết số lương thực, thực phẩm đó lên tàu trong thời gian bao lâu?

(Sở Quảng Ngãi năm học 2014-2015)

Xem đáp án » 13/07/2024 9,429

Câu 2:

Hai người cùng làm chung một công việc thì sau 3 giờ 36 phút làm xong. Nếu làm một mình thì người thứ nhất hoàn thành công việc sớm hơn người thứ hai là 3 giờ. Hỏi nếu mỗi người làm một mình thì bao lâu xong công việc.

Xem đáp án » 13/07/2024 7,138

Câu 3:

Cho hai vòi nước cùng lúc chảy vào một bể cạn. Nếu chảy riêng từng vòi thì vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ hai 4 giờ. Khi nước đầy bể, người ta khóa vòi thứ nhất và vòi thứ hai lại, đồng thời mở vòi thứ ba cho nước chảy ra thì sau 6 giờ bể cạn nước. Khi nước trong bể đã cạn, mở cả ba vòi thì sau 24 giờ bể lại đầy nước. Hỏi nếu chỉ dùng vòi thứ nhất thì sau bao lâu bể đầy nước.

Xem đáp án » 13/07/2024 1,356

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL