Câu hỏi:

13/07/2024 1,648

Cho hai vòi nước cùng lúc chảy vào một bể cạn. Nếu chảy riêng từng vòi thì vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ hai 4 giờ. Khi nước đầy bể, người ta khóa vòi thứ nhất và vòi thứ hai lại, đồng thời mở vòi thứ ba cho nước chảy ra thì sau 6 giờ bể cạn nước. Khi nước trong bể đã cạn, mở cả ba vòi thì sau 24 giờ bể lại đầy nước. Hỏi nếu chỉ dùng vòi thứ nhất thì sau bao lâu bể đầy nước.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi ẩn là thời gian vòi thứ nhất chảy một mình đầy bể.

“Khi nước trong bể đã cạn, mở cả ba vòi” thì lúc này có vòi thứ nhất và vòi thứ hai chảy vào, còn vòi thứ ba chảy ra. Sau 24 giờ thì đầy bể.

Ta xác định được thời gian vòi thứ ba chảy một mình cạn bể là 6 giờ.

 

Thời gian hoàn thành công việc (giờ)

Năng suất làm trong 1 giờ

Vòi 1

\(x\)

\(\frac{1}{x}\)

Vòi 2

\[x + 4\]

\(\frac{1}{{x + 4}}\)

Vòi 3

6

\(\frac{1}{6}\)

Cả ba vòi (vòi 1, 2 chảy vào, vòi 3 chảy ra)

24

\(\frac{1}{{24}}\)

Gọi thời gian mà vòi thứ nhất chảy riêng đầy bể là x (giờ). Điều kiện: \[x > 0.\]

Khi đó thời gian vòi thứ hai chảy riêng đầy bể là \[x + 4\] (giờ).

Trong 1 giờ:

+ Vòi thứ nhất chảy được \(\frac{1}{x}\) bể.

+ Vòi thứ hai chảy được \(\frac{1}{{x + 4}}\) bể.

+ Vòi thứ ba chảy được \(\frac{1}{6}\) bể (vì vòi thứ ba chảy riêng 6 giờ cạn bể).

+ Cả ba vòi cùng chảy được \(\frac{1}{{24}}\) bể.

Vì cả ba vòi cùng chảy thì sau 24 giờ đầy bể nên ta có phương trình:

\(\frac{1}{x} + \frac{1}{{x + 4}} - \frac{1}{6} = \frac{1}{{24}} \Leftrightarrow \frac{1}{x} + \frac{1}{{x + 4}} - = \frac{5}{{24}} \Leftrightarrow 5{x^2} - 28x - 96 = 0 \Leftrightarrow \)  

Vậy chỉ dùng vòi thứ nhất thì sau 8 giờ bể đầy nước.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x (giờ) là thời gian người thứ nhất một mình làm xong cả công việc, y (giờ) là thời gian người thứ hai một mình làm xong cả công việc.

Điêu kiện: \[x,{\rm{ }}y > \frac{{20}}{7}.\]

Theo đề bài, thời gian người thứ hai làm được nửa công việc lâu hơn người thứ nhất làm được nửa công việc là 3 giờ. Do đó: \(\frac{y}{2} - \frac{x}{2} = 3\)   (1)

Trong 1 giờ:

+ Người thứ nhất làm được \(\frac{1}{x}\) công việc.

+ Người thứ hai làm được \(\frac{1}{y}\) công việc.

+ Cả hai người làm được \(1:\frac{{20}}{7} = \frac{7}{{20}}\) công việc.

Suy ra \(\frac{1}{x} + \frac{1}{y} = \frac{7}{{20}}\)   (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{7}{{20}}\\\frac{y}{2} - \frac{x}{2} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{7}{{20}}\\y - x = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{{x + 6}} = \frac{7}{{20}}{\rm{ }}\left( 4 \right)\\y = x + 6{\rm{     }}\left( 3 \right)\end{array} \right.\)

Xét phương trình: (4) \[ \Leftrightarrow 7{x^2} + 2x - 120 = 0 \Leftrightarrow \]

Vậy thời gian một mình làm xong cả công việc của người thứ nhất là 4 giờ, của người thứ hai là 10 giờ.

Lời giải

Gọi ẩn là thời gian người thứ nhất làm một mình xong công việc và lập bảng:

 

Thời gian hoàn thành công việc (giờ)

Năng suất làm trong 1 giờ

Hai người

\(\frac{{18}}{5}\)

\(\frac{5}{{18}}\)

Người thứ nhất

x

\(\frac{1}{x}\)

Người thứ hai

\(x + 3\)

\(\frac{1}{{x + 3}}\)

Đổi 3 giờ 36 phút\[ = 3\frac{3}{5}\left( h \right) = \frac{{18}}{5}\left( h \right).\]

Gọi x (giờ) là thời gian người thứ nhất làm một mình xong công việc. Điều kiện: \[x > 0.\]

Khi đó thời gian người thứ hai làm một mình xong công việc là \[x + 3\] (giờ).

Trong 1 giờ:

+ Người thứ nhất làm được \(\frac{1}{x}\) công việc.

+ Người thứ hai làm được \(\frac{1}{{x + 3}}\) công việc.

+ Cả hai người làm được \(\frac{5}{{18}}\) công việc

 Ta có phương trình: \(\frac{1}{{x + 3}} + \frac{1}{x} = \frac{5}{{18}}\)

 

Vậy người thứ nhất làm một mình thì 6 giờ xong công việc, 9 giờ xong công việc.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay