Câu hỏi:
13/07/2024 12,210
Để chuẩn bị cho một chuyến đi đánh bắt cá ở Hoàng Sa, hai ngư dân đảo Lý Sơn cần chuyển một số lương thực, thực phẩm lên tàu. Nếu người thứ nhất chuyển xong một nửa số lương thực, thực phẩm; sau đó người thứ hai chuyển hết số còn lại lên tàu thì thời gian người thứ hai hoàn thành lâu hơn người thứ nhất là 3 giờ. Nếu cả hai cùng làm chung thì thời gian chuyển hết số lương thực, thực phẩm lên tàu là \(\frac{{20}}{7}\) giờ. Hỏi nếu làm riêng một mình thì mỗi người chuyển hết số lương thực, thực phẩm đó lên tàu trong thời gian bao lâu?
(Sở Quảng Ngãi năm học 2014-2015)
Để chuẩn bị cho một chuyến đi đánh bắt cá ở Hoàng Sa, hai ngư dân đảo Lý Sơn cần chuyển một số lương thực, thực phẩm lên tàu. Nếu người thứ nhất chuyển xong một nửa số lương thực, thực phẩm; sau đó người thứ hai chuyển hết số còn lại lên tàu thì thời gian người thứ hai hoàn thành lâu hơn người thứ nhất là 3 giờ. Nếu cả hai cùng làm chung thì thời gian chuyển hết số lương thực, thực phẩm lên tàu là \(\frac{{20}}{7}\) giờ. Hỏi nếu làm riêng một mình thì mỗi người chuyển hết số lương thực, thực phẩm đó lên tàu trong thời gian bao lâu?
(Sở Quảng Ngãi năm học 2014-2015)
Quảng cáo
Trả lời:
Gọi x (giờ) là thời gian người thứ nhất một mình làm xong cả công việc, y (giờ) là thời gian người thứ hai một mình làm xong cả công việc.
Điêu kiện: \[x,{\rm{ }}y > \frac{{20}}{7}.\]
Theo đề bài, thời gian người thứ hai làm được nửa công việc lâu hơn người thứ nhất làm được nửa công việc là 3 giờ. Do đó: \(\frac{y}{2} - \frac{x}{2} = 3\) (1)
Trong 1 giờ:
+ Người thứ nhất làm được \(\frac{1}{x}\) công việc.
+ Người thứ hai làm được \(\frac{1}{y}\) công việc.
+ Cả hai người làm được \(1:\frac{{20}}{7} = \frac{7}{{20}}\) công việc.
Suy ra \(\frac{1}{x} + \frac{1}{y} = \frac{7}{{20}}\) (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{7}{{20}}\\\frac{y}{2} - \frac{x}{2} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{7}{{20}}\\y - x = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{{x + 6}} = \frac{7}{{20}}{\rm{ }}\left( 4 \right)\\y = x + 6{\rm{ }}\left( 3 \right)\end{array} \right.\)
Xét phương trình: (4) \[ \Leftrightarrow 7{x^2} + 2x - 120 = 0 \Leftrightarrow \]
Vậy thời gian một mình làm xong cả công việc của người thứ nhất là 4 giờ, của người thứ hai là 10 giờ.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi ẩn là thời gian người thứ nhất làm một mình xong công việc và lập bảng:
|
Thời gian hoàn thành công việc (giờ) |
Năng suất làm trong 1 giờ |
Hai người |
\(\frac{{18}}{5}\) |
\(\frac{5}{{18}}\) |
Người thứ nhất |
x |
\(\frac{1}{x}\) |
Người thứ hai |
\(x + 3\) |
\(\frac{1}{{x + 3}}\) |
Đổi 3 giờ 36 phút\[ = 3\frac{3}{5}\left( h \right) = \frac{{18}}{5}\left( h \right).\]
Gọi x (giờ) là thời gian người thứ nhất làm một mình xong công việc. Điều kiện: \[x > 0.\]
Khi đó thời gian người thứ hai làm một mình xong công việc là \[x + 3\] (giờ).
Trong 1 giờ:
+ Người thứ nhất làm được \(\frac{1}{x}\) công việc.
+ Người thứ hai làm được \(\frac{1}{{x + 3}}\) công việc.
+ Cả hai người làm được \(\frac{5}{{18}}\) công việc
Ta có phương trình: \(\frac{1}{{x + 3}} + \frac{1}{x} = \frac{5}{{18}}\)
Vậy người thứ nhất làm một mình thì 6 giờ xong công việc, 9 giờ xong công việc.
Lời giải
Đổi 1 giờ 12 phút\[ = 1\frac{1}{5} = \frac{6}{5}\left( h \right),\] 30 phút\[ = \frac{1}{2}\left( h \right).\]
Gọi thời gian vòi thứ nhất và vòi thứ hai chảy một mình đầy bể lần lượt là x, y (giờ).
Điều kiện: \(x > \frac{6}{5},y > \frac{6}{5}\)
Trong 1 giờ:
+ Vòi thứ nhất chảy được \(\frac{1}{x}\) bể.
+ Vòi thứ hai chảy được \(\frac{1}{y}\) bể.
+ Cả hai vòi chảy được \(1:\frac{6}{5} = \frac{5}{6}\) bể.
Suy ra phương trình: \(\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\) (1)
Trong 30 phút, vòi thứ nhất chảy được \(\frac{1}{x}:2 = \frac{1}{{2x}}\) bể.
Vì nếu vòi thứ nhất chảy trong 30 phút và vòi thứ hai chảy trong 1 giờ thì được \(\frac{7}{{12}}\) bể, nên
\(\frac{1}{{2x}} + \frac{1}{y} = \frac{7}{{12}}\) (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\\\frac{1}{{2x}} + \frac{1}{y} = \frac{7}{{12}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{x} = \frac{1}{2}\\\frac{1}{y} = \frac{1}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\) (thỏa mãn).
Vậy thời gian vòi thứ nhất chảy một mình đầy bể là 2 giờ, thời gian vòi thứ hai chảy một mình đầy bể là 3 giờ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.