Câu hỏi:

13/07/2024 12,046

Để chuẩn bị cho một chuyến đi đánh bắt cá ở Hoàng Sa, hai ngư dân đảo Lý Sơn cần chuyển một số lương thực, thực phẩm lên tàu. Nếu người thứ nhất chuyển xong một nửa số lương thực, thực phẩm; sau đó người thứ hai chuyển hết số còn lại lên tàu thì thời gian người thứ hai hoàn thành lâu hơn người thứ nhất là 3 giờ. Nếu cả hai cùng làm chung thì thời gian chuyển hết số lương thực, thực phẩm lên tàu là \(\frac{{20}}{7}\) giờ. Hỏi nếu làm riêng một mình thì mỗi người chuyển hết số lương thực, thực phẩm đó lên tàu trong thời gian bao lâu?

(Sở Quảng Ngãi năm học 2014-2015)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi x (giờ) là thời gian người thứ nhất một mình làm xong cả công việc, y (giờ) là thời gian người thứ hai một mình làm xong cả công việc.

Điêu kiện: \[x,{\rm{ }}y > \frac{{20}}{7}.\]

Theo đề bài, thời gian người thứ hai làm được nửa công việc lâu hơn người thứ nhất làm được nửa công việc là 3 giờ. Do đó: \(\frac{y}{2} - \frac{x}{2} = 3\)   (1)

Trong 1 giờ:

+ Người thứ nhất làm được \(\frac{1}{x}\) công việc.

+ Người thứ hai làm được \(\frac{1}{y}\) công việc.

+ Cả hai người làm được \(1:\frac{{20}}{7} = \frac{7}{{20}}\) công việc.

Suy ra \(\frac{1}{x} + \frac{1}{y} = \frac{7}{{20}}\)   (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{7}{{20}}\\\frac{y}{2} - \frac{x}{2} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{7}{{20}}\\y - x = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{{x + 6}} = \frac{7}{{20}}{\rm{ }}\left( 4 \right)\\y = x + 6{\rm{     }}\left( 3 \right)\end{array} \right.\)

Xét phương trình: (4) \[ \Leftrightarrow 7{x^2} + 2x - 120 = 0 \Leftrightarrow \]

Vậy thời gian một mình làm xong cả công việc của người thứ nhất là 4 giờ, của người thứ hai là 10 giờ.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi ẩn là thời gian người thứ nhất làm một mình xong công việc và lập bảng:

 

Thời gian hoàn thành công việc (giờ)

Năng suất làm trong 1 giờ

Hai người

\(\frac{{18}}{5}\)

\(\frac{5}{{18}}\)

Người thứ nhất

x

\(\frac{1}{x}\)

Người thứ hai

\(x + 3\)

\(\frac{1}{{x + 3}}\)

Đổi 3 giờ 36 phút\[ = 3\frac{3}{5}\left( h \right) = \frac{{18}}{5}\left( h \right).\]

Gọi x (giờ) là thời gian người thứ nhất làm một mình xong công việc. Điều kiện: \[x > 0.\]

Khi đó thời gian người thứ hai làm một mình xong công việc là \[x + 3\] (giờ).

Trong 1 giờ:

+ Người thứ nhất làm được \(\frac{1}{x}\) công việc.

+ Người thứ hai làm được \(\frac{1}{{x + 3}}\) công việc.

+ Cả hai người làm được \(\frac{5}{{18}}\) công việc

 Ta có phương trình: \(\frac{1}{{x + 3}} + \frac{1}{x} = \frac{5}{{18}}\)

 

Vậy người thứ nhất làm một mình thì 6 giờ xong công việc, 9 giờ xong công việc.

Lời giải

Đổi 1 giờ 12 phút\[ = 1\frac{1}{5} = \frac{6}{5}\left( h \right),\] 30 phút\[ = \frac{1}{2}\left( h \right).\]

Gọi thời gian vòi thứ nhất và vòi thứ hai chảy một mình đầy bể lần lượt là x, y (giờ).

Điều kiện: \(x > \frac{6}{5},y > \frac{6}{5}\)

Trong 1 giờ:

+ Vòi thứ nhất chảy được \(\frac{1}{x}\) bể.

+ Vòi thứ hai chảy được \(\frac{1}{y}\) bể.

+ Cả hai vòi chảy được \(1:\frac{6}{5} = \frac{5}{6}\) bể.

Suy ra phương trình: \(\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\) (1)

Trong 30 phút, vòi thứ nhất chảy được \(\frac{1}{x}:2 = \frac{1}{{2x}}\) bể.

Vì nếu vòi thứ nhất chảy trong 30 phút và vòi thứ hai chảy trong 1 giờ thì được \(\frac{7}{{12}}\) bể, nên

\(\frac{1}{{2x}} + \frac{1}{y} = \frac{7}{{12}}\)    (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\\\frac{1}{{2x}} + \frac{1}{y} = \frac{7}{{12}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{x} = \frac{1}{2}\\\frac{1}{y} = \frac{1}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\) (thỏa mãn).

Vậy thời gian vòi thứ nhất chảy một mình đầy bể là 2 giờ, thời gian vòi thứ hai chảy một mình đầy bể là 3 giờ.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay