Trong hệ tọa độ cho Parabol và đường thẳng (d) có phương trình: .
Chứng minh với mọi giá trị của m thì (d) luôn cắt (P) tại hai điểm phân biệt.
Giả sử cắt (P) tại hai điểm phân biệt A,B . Tìm m để tam giác OAB cân tại O. Khi đó tính diện tích tam giác OAB.
Trong hệ tọa độ cho Parabol và đường thẳng (d) có phương trình: .
Chứng minh với mọi giá trị của m thì (d) luôn cắt (P) tại hai điểm phân biệt.
Giả sử cắt (P) tại hai điểm phân biệt A,B . Tìm m để tam giác OAB cân tại O. Khi đó tính diện tích tam giác OAB.
Câu hỏi trong đề: Bộ đề Ôn tập Toán 9 thi vào 10 năm 2019 có đáp án !!
Quảng cáo
Trả lời:
Xét PT hoành độ giao điểm:
Ta có Phương trình (*) luôn có 2 nghiệm trái dấu
thì luôn cắt (P) tại hai điểm phân biệt.
Để tam giác AOB cân tại O thì Oy là đường trung trực của đoạn thẳng AB hay đường thẳng d song song Ox khi đó:
Với đường thẳng d có phương trình: , tọa độ 2 giao điểm A, B là . Khi đó khoảng cách từ O đến AB là . Độ dài đoạn thẳng
Diện tích tam giác AOB là:
Vậy để tam giác AOB cân tại O thì m=1. Khi đó (đvdt)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình hoành độ giao điểm của và :
(1)
Số nghiệm phương trình (1) là số giao điểm của và .
Ta có .
Ta có với mọi giá trị của .
Suy ra với mọi giá trị của .
phương trình (1) luôn có hai nghiệm phân biệt với mọi hay luôn cắt tại hai điểm phân biệt.
b) Tìm các giá trị của để cắt tại hai điểm phân biệt có hoành độ thỏa mãn .
Theo câu a), ta có là hai nghiệm phương trình (1) nên theo Viet:
Kết hợp giả thiết ta có
Từ (2) và (4), tính được
Thay vào (3), tính được .
Vậy thỏa mãn đề bài.
Lời giải
Bảng giá trị :
x
|
-2 |
-1 |
0 |
1 |
2 |
x2
|
2 |
1/2
|
0 |
1/2
|
2 |
Đồ thị

b) Đường thẳng (d): đi qua điểm , ta có
c) Phương trình hoành độ giao điểm của (P) và đường thẳng y = 2 là :
AB = 4, H(0 ;2) là giao điểm của đường thẳng y = 2 và trục tung
Diện tích tam giác OAB : (đvdt)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.