Câu hỏi:

29/08/2022 2,266

Cho đường tròn O;12 cm và điểm M cách  một khoảng bằng 20 cm. Kẻ tiếp tuyến MA ( là tiếp điểm) và kẻ dây  vuông góc với OM. Chứng minh MB là tiếp tuyến của đường tròn (O).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phân tích đề bài

Media VietJack

 là tiếp tuyến của đường tròn (O)

                          

                     OBBM

                           

                    OBM^=90°

                           

                  OBM^=OAM^

Giải chi tiết

Gọi H=OMAB. Xét ΔOAH ΔOBH có: OA =  (bán kính đường tròn (O));

                                                                              OHA^=OHB^=90° (giả thiết);

                                                                              OH chung.

Suy ra ΔOAH=ΔOBH (cạnh huyền – cạnh góc vuông) HA=HB (hai cạnh tương ứng).

Tam giác MAB có MH vừa là đường cao đồng thời là đường trung tuyến nên ΔMAB cân tại M

A1^=B1^ (hai góc ở đáy).

Lại có ΔOAB cân tại O nên A2^=B2^. Khi đó MBO^=B1^+B2^=A1^+A2^=OAM^=90°.

Suy ra OBBM. Vậy MB là tiếp tuyến của đường tròn (O).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có hai đường cao BD CE cắt nhau tại H.

a) Chứng minh rằng bốn điểm A, D, H , cùng nằm trên một đường tròn (gọi tâm của nó là O ).

b) Gọi M là trung điểm của BC. Chứng minh rằng ME là tiếp tuyến của đường tròn (O).

Xem đáp án » 13/07/2024 24,070

Câu 2:

Cho đường tròn (0; R) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AE đến đường tròn (O) (với E là tiếp điểm). Vẽ dây EH vuông góc với AO tại M.

a) Cho biết bán kính R = 5cm, OM = 3cm. Tính độ dài dây EH.

b) Chứng minh AH là tiếp tuyến của đường tròn (O).

c) Đường thẳng qua O vuông góc với OA cắt AH tại B. Vẽ tiếp tuyến BF với đường tròn (O) (F là tiếp điểm). Chứng minh ba điểm E, O, F thẳng hàng và BF.AE=R2.

d) Trên tia HB lấy điểm IIB, qua I vẽ tiếp tuyến thứ hai với đường tròn (O) cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắt AE tại Q.

Chứng minh AE = DQ.

Xem đáp án » 13/07/2024 14,474

Câu 3:

Cho đường tròn O;R đường kính AB. Qua A B vẽ lần lượt hai tiếp tuyến d d'. Một đường thẳng qua O cắt đường thẳng d M d' P. Từ O kẻ Ox vuông góc với MP và cắt d' N.

a) Chứng minh OM=OP ΔNMP cân.

b) Chứng minh MN là tiếp tuyến của O.

c) Chứng minh AM.BN=R2.

d) Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất.

Xem đáp án » 12/07/2024 478

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL