Cho tam giác có hai đường cao BD và cắt nhau tại .
a) Chứng minh rằng bốn điểm A, D, H , cùng nằm trên một đường tròn (gọi tâm của nó là O ).
b) Gọi M là trung điểm của . Chứng minh rằng ME là tiếp tuyến của đường tròn (O).
Cho tam giác có hai đường cao BD và cắt nhau tại .
a) Chứng minh rằng bốn điểm A, D, H , cùng nằm trên một đường tròn (gọi tâm của nó là O ).
b) Gọi M là trung điểm của . Chứng minh rằng ME là tiếp tuyến của đường tròn (O).
Quảng cáo
Trả lời:
Phân tích đề bài

a) Thấy ngay hai tam giác AEH và ADH là hai tam giác vuông có chung cạnh huyền nên bốn điểm A, D, H, E cùng nằm trên đường tròn đường kính AH.
b) EM là tiếp tuyến của (O)
Giải chi tiết
a) Gọi O là trung điểm của AH.
Theo giả thiết và là các tam giác vuông có chung cạnh huyển AH nên bốn điểm A, D, H, E cùng nằm trên đường tròn (O) đường kính AH.
b) Xét tam giác OAE có OE = OA nên cân tại O . (1)
Tương tự cân tại M nên . (2)
Gọi .
Lại có: (vì cùng phụ với ). (3)
Từ (1), (2) và (3) suy ra .
Ta có: .
Vậy ME là tiếp tuyến của đường tròn (O).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Theo giả thiết, tại M nên M là trung điểm của EH (quan hệ đường kính và dây cung).
.
Áp dụng định lí Pytago trong tam giác QEM có:
.
Vậy độ dài dây EH là 8 cm.
b) cân tại A vì có AM vừa là đường cao, đồng thời là đường trung tuyến.
.
Xét và có: OE = OH (bán kính đường tròn (O));
AE = AH (chứng minh trên);
OA chung.
(hai góc tương ứng).
Hay . Vậy AH là tiếp tuyến của đường tròn (O).
c) Ta thấy B là giao của hai tiếp tuyến BH và BF nên .
Lại có nên .
Tức là ba điểm E, O, F thẳng hàng.
Theo tính chất của hai tiếp tuyến cắt nhau ta có: FB = BH, EA =HA.
Áp dụng hệ thức lượng trong tam giác vuông OAB ta có: .
Vậy . (1)

d) Ta có (vì cùng vuông góc với EF).
(*).
Dễ dàng chứng minh được vuông tại O.
Áp dụng hệ thức lượng trong tam giác vuông COD, với OK là đường cao, ta có: .
Mà DE, DK là các tiếp tuyến của (O) cắt nhau tại D nên DE = DK.
Tương tự, CK = CF.
(2)
Từ (1) và (2) suy ra: (**)
Từ (*) và (**) suy ra: .
Lời giải
Phân tích đề bài

là tiếp tuyến của đường tròn (O)
Giải chi tiết
Gọi . Xét và có: OA = (bán kính đường tròn (O));
(giả thiết);
OH chung.
Suy ra (cạnh huyền – cạnh góc vuông) (hai cạnh tương ứng).
Tam giác MAB có MH vừa là đường cao đồng thời là đường trung tuyến nên cân tại M
(hai góc ở đáy).
Lại có cân tại O nên . Khi đó .
Suy ra . Vậy MB là tiếp tuyến của đường tròn (O).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.