Câu hỏi:

13/07/2024 1,382

Cho hình thoi ABCD có \[\widehat A = 60^\circ \]. Qua C kẻ đường thẳng d không cắt hình thoi nhưng cắt đường thẳng AB tại E và cắt đường thẳng AD tại F.

Chứng minh \[BE.DF = D{B^2}\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thoi ABCD có góc A = 60 độ. Chứng minh BE.DF = DB^2 (ảnh 1)

Do \[BE\parallel DC\] nên \[\widehat {BEC} = \widehat {DCF}\]

Do \[BC\parallel DF\] nên \[\widehat {BCE} = \widehat {DFC} \Rightarrow \Delta BCE\~\Delta DFC\]

Suy ra \[\frac{{BE}}{{DC}} = \frac{{BC}}{{DF}}\] hay \[BE.DF = CD.BC\]

Mặt khác \[\widehat A = 60^\circ \Rightarrow \widehat C = 60^\circ \Rightarrow \Delta BCD\] đều

Do đó \[BE.DF = CD.BC = BD.BD = B{D^2}\] (đpcm)

Vậy \[BE.DF = B{D^2}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ HM vuông góc AB và HN vuông góc AC. Chứng minh AM.AB = AN.AC (ảnh 1)

Xét \(\Delta AHM\)\(\Delta ABH\) có: \(\widehat {MAH}\) chung; \(\widehat {AMH} = \widehat {AHB} = 90^\circ \)

\( \Rightarrow \Delta AHM\~\Delta AHB\) (g.g) \( \Rightarrow \frac{{AH}}{{AB}} = \frac{{AM}}{{AH}} \Rightarrow A{H^2} = AM.AB\) (1)

Xét \(\Delta AHN\)\(\Delta ABH\) có: \(\widehat {NAH}\) chung; \(\widehat {ANH} = \widehat {AHC} = 90^\circ \)

\( \Rightarrow \Delta AHN\~\Delta ACH\)\[ \Rightarrow \frac{{AH}}{{AC}} = \frac{{AN}}{{AH}} \Rightarrow A{H^2} = AN.AC\] (2)

Từ (1), (2) suy ra: \[AM.AB = AN.AC\]

Lời giải

Qua D kẻ đường thẳng vuông góc với BC cắt AC tại K. Qua K kẻ đường thẳng (ảnh 1)

Do AB, DK cùng vuông góc với BC nên \[AB\parallel DK\]. Suy ra \[\widehat {BAD} = \widehat {ADK}\]

Mặt khác, \[\widehat {ADK} = \widehat {KHD}\] (cùng phụ với \[\widehat {HKD}\]). Do đó \[\widehat {BAD} = \widehat {KHD}\]

Xét \[\Delta ABD\]\[\Delta HDK\] có: \[\widehat {BAD} = \widehat {KHD};\,\,\widehat {ABD} = \widehat {HDK} = 90^\circ \] nên \[\Delta ABD\sim\Delta HDK\] (g.g)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP