Câu hỏi:
29/08/2022 524Cho tam giác ABC vuông tại B. Đường phân giác AD. Biết \[AB = 6cm,\,\,AC = 10cm\].
Chứng minh \[AK\parallel DF\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\[\Delta AFK\] có AE vừa là đường cao, vừa là đường phân giác nên cân tại A và E là trung điểm của FK (1)
\[ \Rightarrow \widehat {AFK} = \widehat {AKF}\]. Mà \[\widehat {AFK} = \widehat {DKF}\,\,(AB\parallel DK)\] nên suy ra \[\widehat {AKF} = \widehat {DKF}\]
\[ \Rightarrow \Delta AKD\] cân tại K và E là trung điểm của AD (2)
Từ (1) và (2), suy ra tứ giác AKDF có hai đường chéo AD và FK cắt nhau tại trung điểm của mỗi đường nên AKDF là hình bình hành.
Do vậy \[AK\parallel DF\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại B. Đường phân giác AD. Biết \[AB = 6cm,\,\,AC = 10cm\].
Qua D kẻ đường thẳng vuông góc với BC cắt AC tại K. Qua K kẻ đường thẳng vuông góc với AD cắt AD, AB, BC lần lượt tại E, F, H. Chứng minh \[\Delta ABC\sim\Delta HDK\]
Câu 2:
Cho tam giác ABC vuông tại A. Kẻ đường cao AH của tam giác.
Kẻ \(HM \bot AB\) và \(HN \bot AC\). Chứng minh \(AM.AB = AN.AC\)
Câu 3:
Cho tứ giác ABCD có diện tích 36 cm2, trong đó diện tích \[\Delta ABC\] là 11 cm 2. Qua điểm B kẻ đường thẳng song song với AC cắt AD ở M, cắt CD ở N. Tính diện tích \[\Delta MND\].
Câu 4:
Cho tam giác ABC vuông tại A. Kẻ đường cao AH của tam giác.
Chứng minh \(\Delta AMN\sim\Delta ACB\)
Câu 5:
Cho tam giác ABC có \[AB = 18cm,\,AC = 24cm,\,BC = 30cm\]. Gọi M là trung điểm của BC. Qua M kẻ đường vuông góc với BC cắt AB, AC lần lượt ở D, E.
Chứng minh rằng: \[\Delta ABC\sim\Delta MDC\]
Câu 6:
Cho tam giác ABC vuông tại B. Đường phân giác AD. Biết \[AB = 6cm,\,\,AC = 10cm\].
Tính BD và CD
Câu 7:
Cho tam giác ABC cân tại A, M là trung điểm của BC. Lấy các điểm D và E trên AB, AC sao cho \[\widehat {DME} = \widehat B\]
Chứng minh rằng \[\Delta BDM\sim\Delta CME\]
về câu hỏi!