Câu hỏi:

19/08/2025 310 Lưu

Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Một đường thẳng tiếp xúc với đường tròn (O) tại C và tiếp xúc với đường tròn (O') tại D. Vẽ đường tròn (I) qua ba điểm A,C,D cắt đường thẳng AB tại một điểm thứ hai là E. Chứng minh rằng:

a)  CAD^+CBD^=180°.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có:  CBA^=ACD^ (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn  AC).

            ADC^=ABD^ (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn  AD).

Theo định lí tổng ba góc trong tam giác  ACD ta có:

 CAD^+ACD^+ADC^=180°180°=CAD^+CBA^+ABD^ 

 180°=CAD^+CBD^  (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Do MB song song với AC nên  BMC^=ACM^ (hai góc so le trong).

Ta lại có  ACM^=ACE^=MAE^ (cùng chắn  AE).

Do đó  BMC^=MAE^.

Xét  ΔKME  và  ΔKAM có:  BMC^=MAE^ (chứng minh trên).

                               MKE^ chung.

Suy ra   ΔKME~ΔKAMg.gMKAK=EKMK hay MK2=AK.EK (đpcm). (1)

Ta thấy  EAB^=EBK^ (cùng chắn  BE).

Từ đó  ΔEBK~ΔBAKg.gBKAK=EKBK hay BK2=AK.EK.            (2)

Từ (1) và (2) suy ra  MK2=KB2 nghĩa là  MK=KB (đpcm).

Lời giải

a) Ta có  MCA^=ABC^ (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp chắn cung AC).

Lại có  ACH^=ABC^  (cùng phụ với góc  CAH^).

Do đó  MCA^=ACH^, suy ra CA là tia phân giác của góc  MCH^.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP