Câu hỏi:

12/07/2024 4,953

Cho đường tròn (O;R) và một điểm A cố định trên đường tròn đó. Qua A vẽ tiếp tuyến xy. Từ một điểm M trên xy vẽ tiếp tuyến MB với đường tròn (O). Hai đường cao AD và BE của tam giác MAB cắt nhau tại H.

a) Chứng minh rằng ba điểm M, H, O thẳng hàng.

b) Chứng minh rằng tứ giác AOBH là hình thoi.

c) Khi điểm M di động trên xy thì điểm H di động trên đường nào?

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

a) H là trực tâm của tam giác AMB nên MHAB.

MOAB (tính chất hai tiếp tuyến cắt nhau) nên ba điểm M, H, O thẳng hàng.

b) ABOH là hình bình hành vì có AH//OB,OA//BH.

Lại có ABOH nên AOBH là hình thoi.

c) Vì AOBH là hình thoi nên AH=OA=R (không đổi) và A cố định nên khi M di động trên xy thì điểm H di động trên đường tròn (A; R).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ một điểm A ở ngoài đường tròn (O; R), vẽ hai tiếp tuyến AB, AC với đường tròn. Đường thẳng vuông góc với OB tại O cắt AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.

a) Chứng minh rằng tứ giác AMON là hình thoi.

b) Điểm A phải cách điểm O một khoảng bao nhiêu để cho MN là tiếp tuyến của (O).

Xem đáp án » 12/07/2024 17,297

Câu 2:

Cho tam giác ABC vuông tại A có AB = 8, AC = 15. Vẽ đường cao AH. Gọi D là điểm đối xứng với B qua H. Vẽ đường tròn đường kính CD, cắt AC ở E.

a) Chứng minh rằng HE là tiếp tuyến của đường tròn.

b) Tính độ dài HE.

Xem đáp án » 12/07/2024 16,407

Câu 3:

Cho đường tròn (O; R) và đường thẳng d cố định không cắt đường tròn. Từ một điểm A bất kỳ trên đường thẳng d kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Từ B kẻ đường thẳng vuông góc với AO tại H, trên tia đối của tia HB lấy điểm C sao cho H là trung điểm của BC.

a) Chứng minh C thuộc đường tròn (O; R) và AC là tiếp tuyến của đường tròn (O; R).

b) Từ O kẻ đường thẳng vuông góc với đường thẳng d tại I, OI cắt BC tại K.

Chứng minh OI.OK=R2.

c) Chứng minh khi A thay đổi trên đường thẳng d thì đường thẳng BC luôn đi qua một điểm cố định.

Xem đáp án » 13/07/2024 6,777

Câu 4:

Cho hai đường tròn (O)(O’) tiếp xúc ngoài với nhau tại B. Vẽ đường kính AB của đường tròn (O) và đường kính BC của đường tròn (O’). Đường tròn đường kính OC cắt (O) tại M và N.

a) Đường thẳng CM cắt (O’) tại P. Chứng minh: OM//BP.

b) Từ C vẽ đường thẳng vuông góc với CM cắt tia ON tại D. Chứng minh tam giác OCD là tam giác cân.

Xem đáp án » 12/07/2024 6,252

Câu 5:

Cho đường tròn (O) đường kính AB có Ax, By là 2 tia tiếp tuyến của (O) (Ax, By) cùng nằm trên nửa mặt phẳng bờ là đường thẳng AB). Trên tia Ax lấy điểm C sao cho COD^=90. Chứng minh rằng CD tiếp xúc với đường tròn (O).

Xem đáp án » 12/07/2024 6,194

Câu 6:

Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là điểm đối xứng với H qua AB, AC. E, D là hình chiếu của H lên AB, AC. Chứng minh rằng MN là tiếp tuyến của đường tròn đường kính BC.

Xem đáp án » 12/07/2024 5,761

Câu 7:

Cho đường tròn (O; R) đường kính AB. Vẽ dây AC sao cho CAB^=30°. Trên tia đối của tia BA, lấy điểm M sao cho B là trung điểm của OM. Chứng minh rằng:

a) MC là tiếp tuyến của đường tròn (O).

b) MC2=3R2.

Xem đáp án » 12/07/2024 5,653

Bình luận


Bình luận