Câu hỏi:

11/07/2024 2,592

Cho tam giác ABC có ba góc nhọn và góc A bằng 45 độ . Gọi D , E lần lượt là các hình chiếu vuông góc của B , C lên AC , AB; H là giao điểm của BD và CE .
a) Chứng minh tứ giác BECD nội tiếp.
b) Chứng minh DE.AB=BC.AD và tính tỉ số ED/BC .
c) Chứng minh HE+HD=BE+CD .
d) Gọi I là tâm đường tròn ngoại tiếp của tam giác ABC . Chứng minh AI vuông góc với DE .

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC  có ba góc nhọn và góc A bằng 45 độ . Gọi D , E  lần lượt là các hình chiếu vuông góc của B , C  lên AC ,  AB;  H là giao điểm của  BD và CE . a) Chứng minh tứ giác BECD  nội tiếp. b) Chứng minh DE.AB=BC.AD  và tính tỉ số ED/BC . c) Chứng minh HE+HD=BE+CD . d) Gọi I  là tâm đường tròn ngoại tiếp của tam giác ABC . Chứng minh AI vuông góc với DE . (ảnh 1)

a) Theo giả thiết . Khi đó tứ giác BECD   có đỉnh E và D cùng nhìn cạnh  dưới hai góc bằng nhau nên tứ giác BECD  nội tiếp.

b) Tứ giác BECD  nội tiếp nên BED^   (cùng bù với ).

Xét ΔADE     ΔABC có AED^=ACB^   A^  chung nên  ΔADEΔABC.

Do đó ADDE=ABBCDEAB=BCAD .

Từ ADDE=ABBCDEBC=ADAB .

 ΔABD vuông tại D nên ta có

DEBC=ADAB=cosBAD^=cos45°=22.

c) ΔABD  vuông tại D   BAD^=45°  nên ABD^=45°EBH^=45°

ΔEBH vuông cân tại  E HE=BE .     (1)

Chứng minh tương tự ΔCDH   vuông cân tại  D HD=CD .        (2)

Từ  (1) và (2)  suy ra HE+HD=BE+CD .

d) Vì I   là tâm đường tròn ngoại tiếp tam giác ABC nên I là giao điểm của ba đường trung trực của tam giác ABC  .

Ta có  thuộc trung trực của ; E thuộc trung trực của AC   (vì tam giác AEC vuông cân tại E) suy ra  EIACEIAD.           (3)

Chứng minh tương tự DIABDIAE  .           (4)

Từ (3) và (4) suy ra  là trực tâm của ΔAEDAIDE  .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Kim tự tháp Keop – Ai cập có dạng hình chóp đều, đáy là hình vuông, các mặt bên là các tam giác cân chung đỉnh. Mỗi cạnh bên của kim tự tháp dài 214m, cạnh đáy của nó dài 230m.

a)       Tính theo mét chiều cao h của kim tự tháp (làm tròn đến số thập phân thứ nhất)

b)      Cho biết thể tích của hình chóp được tính theo công thức V=13S.h  , trong đó S là diện tích mặt đáy, h là chiều cao của hình chóp. Tính theo m3 thể tích của kim tự tháp (làm tròn đến hàng nghìn)

Xem đáp án » 11/07/2024 15,099

Câu 2:

Cho đường tròn (O; R) có đường kính AB vuông góc với dây cung MN tại H (H nằm giữa O và B). Trên tia MN lấy điểm C nằm ngoài đường tròn (O; R) sao cho đoạn thẳng AC cắt đường tròn (O; R) tại điểm K (K khác A), hai dây MN và BK cắt nhau ở E.

a) Chứng minh rằng tứ giác AHEK là tứ giác nội tiếp.

b) Chứng minh: CA.CK = CE.CH.

c) Qua điểm N, kẻ đường thẳng (d) vuông góc với AC, (d) cắt tia MK tại F. Chứng minh tam giác cân.

d) Khi KE = KC. Chứng minh rằng: OK // MN.

Xem đáp án » 11/07/2024 14,905

Câu 3:

Cho tam giác ABC vuông tại A có đường cao AH , biết AB=5cm, BH=3cm . Tính AH, AC và sin CAH.

Xem đáp án » 13/07/2024 10,994

Câu 4:

Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn đó. Kẻ cát tuyến AMN không đi qua (O) (M nằm giữa A và N). Kẻ hai tiếp tuyến AB, AC với (O;R). (B và C là hai tiếp điểm và C tuộc cung nhỏ MN). Đường thẳng BC cắt MN và AO lần lượt tại E và F. Gọi I là trung điểm của MN.

a) Chứng minh rằng tứ giác ABOC nội tiếp được trong đường tròn.

b) Chứng minh EB.EC = EM.EN và IA là phân giác của BIC^ .

c) Tia MF cắt (O;R) tại điểm thứ hai là D. Chứng minh rằng ΔAMFΔAON   và BC//DN  .

 d) Giả sử OA = 2R. Tính diện tích tam giác ABC theo R.

Xem đáp án » 11/07/2024 6,915

Câu 5:

Cho đường tròn đường kính AB , các điểm C,D nằm trên đường tròn đó sao cho C,D nằm khác phía đối với đường thẳng AB , đồng thời AD>AC. Gọi điểm chính giữa của các cung nhỏ AC,AD lần lượt là M,N ; giao điểm của MN với AC,AD lần lượt là H,I; giao điểm của MD và CN là K.

a) Chứng minh ACN^=DMN^ . Từ đó suy ra tứ giác  MCKH nội tiếp.

b) Chứng minh KH  song song với AD .

c) Tìm hệ thức liên hệ giữa sđ AC và sđ AD để  song song với ND  .

Xem đáp án » 11/07/2024 4,616

Câu 6:

Cho tam giác ABC vuông tại A ( AB<AC ), đường cao AH ( H thuộc BC) lấy điểm D sao cho BD=BA , vẽ CE vuông góc với AD ( E thuộc AD)

a)      Chứng minh tứ giác AHCE là tứ giác nội tiếp

b)      Chứng minh DA.HE=DH.AC

c)      Chứng minh tam giác EHC cân

Xem đáp án » 11/07/2024 3,690

Câu 7:

Cho hình chữ nhật ABCD, kẻ AH vuông góc với BD tại H, đường thẳng AH cắt DC tại E, biết AH = 4 cm, HE = 2 cm. Tính diện tích hình chữ nhật ABCD

Xem đáp án » 11/07/2024 2,954

Bình luận


Bình luận