Câu hỏi:
11/07/2024 2,971Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k).
Quảng cáo
Trả lời:
a) Theo giả thiết . Khi đó tứ giác có đỉnh E và D cùng nhìn cạnh dưới hai góc bằng nhau nên tứ giác nội tiếp.
b) Tứ giác nội tiếp nên (cùng bù với ).
Xét và có và chung nên .
Do đó .
Từ .
Vì vuông tại D nên ta có
.
c) vuông tại D và nên
vuông cân tại E . (1)
Chứng minh tương tự vuông cân tại D . (2)
Từ (1) và (2) suy ra .
d) Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên I là giao điểm của ba đường trung trực của tam giác ABC .
Ta có thuộc trung trực của ; E thuộc trung trực của AC (vì tam giác AEC vuông cân tại E) suy ra . (3)
Chứng minh tương tự . (4)
Từ (3) và (4) suy ra là trực tâm của .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Kim tự tháp Keop – Ai cập có dạng hình chóp đều, đáy là hình vuông, các mặt bên là các tam giác cân chung đỉnh. Mỗi cạnh bên của kim tự tháp dài 214m, cạnh đáy của nó dài 230m.
a) Tính theo mét chiều cao h của kim tự tháp (làm tròn đến số thập phân thứ nhất)
b) Cho biết thể tích của hình chóp được tính theo công thức , trong đó S là diện tích mặt đáy, h là chiều cao của hình chóp. Tính theo m3 thể tích của kim tự tháp (làm tròn đến hàng nghìn)
Câu 2:
Cho đường tròn (O; R) có đường kính AB vuông góc với dây cung MN tại H (H nằm giữa O và B). Trên tia MN lấy điểm C nằm ngoài đường tròn (O; R) sao cho đoạn thẳng AC cắt đường tròn (O; R) tại điểm K (K khác A), hai dây MN và BK cắt nhau ở E.
a) Chứng minh rằng tứ giác AHEK là tứ giác nội tiếp.
b) Chứng minh: CA.CK = CE.CH.
c) Qua điểm N, kẻ đường thẳng (d) vuông góc với AC, (d) cắt tia MK tại F. Chứng minh tam giác cân.
d) Khi KE = KC. Chứng minh rằng: OK // MN.
Câu 3:
Câu 4:
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn đó. Kẻ cát tuyến AMN không đi qua (O) (M nằm giữa A và N). Kẻ hai tiếp tuyến AB, AC với (O;R). (B và C là hai tiếp điểm và C tuộc cung nhỏ MN). Đường thẳng BC cắt MN và AO lần lượt tại E và F. Gọi I là trung điểm của MN.
a) Chứng minh rằng tứ giác ABOC nội tiếp được trong đường tròn.
b) Chứng minh EB.EC = EM.EN và IA là phân giác của .
c) Tia MF cắt (O;R) tại điểm thứ hai là D. Chứng minh rằng và .
d) Giả sử OA = 2R. Tính diện tích tam giác ABC theo R.
Câu 5:
a) Chứng minh . Từ đó suy ra tứ giác nội tiếp.
b) Chứng minh song song với .
c) Tìm hệ thức liên hệ giữa sđ và sđ để song song với .
Câu 6:
a) Chứng minh tứ giác AHCE là tứ giác nội tiếp
b) Chứng minh
c) Chứng minh tam giác EHC cân
Câu 7:
Cho điểm S cố định ở bên ngoài đường tròn (O). Vẽ tiếp tuyến SA của đường tròn (O) (với A là tiếp điểm) và cát tuyến SCB không qua tâm O, điểm O nằm trong góc ASB, điểm C nằm giữa S và B. Gọi H là trung điểm của đoạn thẳng CB.
a) Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn
b) Chứng mnh rằng
c) Gọi MN là đường kính bất kỳ của đường tròn (O) sao cho ba điểm S, M, N không thẳng hàng. Xác định vị trí của MN để diện tích tam giác SMN lớn nhất
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 02
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận