Khẳng định nào sau đây đúng với tam thức bậc hai
A. f(x) > 0 với mọi x không thuộc khoảng (-1; 1),
B. f(x) < 0 với mọi x thuộc khoảng (-1; 1),
C. với mọi x thuộc khoảng
D. Các khẳng định trên đều sai.
Khẳng định nào sau đây đúng với tam thức bậc hai
A. f(x) > 0 với mọi x không thuộc khoảng (-1; 1),
B. f(x) < 0 với mọi x thuộc khoảng (-1; 1),
C. với mọi x thuộc khoảng
D. Các khẳng định trên đều sai.
Câu hỏi trong đề: Giải SBT Toán 10 Bài tập cuối chương 7 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là D
Tam thức bậc hai có hai nghiệm phân biệt x1 = và x2 = , và a = 10 > 0 nên:
f ( x ) > 0 với x < hoặc x > . Do đó khẳng định A sai.
f ( x ) < 0 với < x < . Do đó khẳng định B sai.
f ( x ) ≥ 0 với x ≤ hoặc x ≥ . Do đó khẳng định C sai.
Vậy khẳng định D đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là B
Xét phương trình
Bình phương hai vế ta được f ( x ) = g ( x )
Đồ thị hàm số f ( x ) và g ( x ) giao nhau tại hai điểm x = 1 và x = 6. Tuy nhiên tại
x = 6 thì g ( x ) < 0 và f ( x ) < 0 nên không thỏa mãn.
Vậy phương trình có 1 nghiệm là x = 1.
Lời giải
Đáp án đúng là D
Tập nghiệm của bất phương trình là .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.