Câu hỏi trong đề: Giải SBT Toán 10 Bài tập cuối chương 7 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là B
Hàm số trên xác định khi và chỉ khi 3 – x ≥ 0 và 9x2 – 3x – 2 > 0
+) Ta có 3 – x ≥ 0 khi và chỉ khi x ≤ 3 (1)
+) Xét tam thức bậc hai f ( x ) = 9x2 – 3x – 2 có ∆ = (– 3)2 – 4.9.(– 2) = 81 > 0 nên f(x) có hai nghiệm phân biệt x1 = và x2 = , và a = 9 > 0 nên f ( x ) > 0 với (2)
Từ (1) và (2) suy ra tập xác định của hàm số trên là .
Vậy đáp án đúng là B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là B
Xét phương trình
Bình phương hai vế ta được f ( x ) = g ( x )
Đồ thị hàm số f ( x ) và g ( x ) giao nhau tại hai điểm x = 1 và x = 6. Tuy nhiên tại
x = 6 thì g ( x ) < 0 và f ( x ) < 0 nên không thỏa mãn.
Vậy phương trình có 1 nghiệm là x = 1.
Lời giải
a) f ( x ) là một tam thức bậc hai âm với mọi x ∈ ℝ khi và chỉ khi a = m – 3 < 0 và
∆’ < 0.
+) Ta có: m – 3 < 0 khi và chỉ khi m < 3.
+) ∆’ = m2 + (m – 3).m = 2m2 – 3m < 0 khi và chỉ khi 0 < m <
Vậy để là một tam thức bậc hai âm với mọi x ∈ ℝ thì
0 < m < .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.