Câu hỏi:
08/09/2022 392b) Để cầu qua được lưới bóng cao 1,5 m thì người phát cầu phải đứng cách lưới bao xa?
Lưu ý: Đáp số làm tròn đến hàng phần trăm.
Câu hỏi trong đề: Giải SBT Toán 10 Bài tập cuối chương 7 có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
b) Với x là khoảng cách từ người phát cầu đến lưới thì cầu phát được qua lưới khi và chỉ khi y ( x ) > 1,5 hay –0,17x2 + x + 0,3 > 1,5 hay –0,17x2 + x – 1,2 > 0.
Xét tam thức bậc hai f(x) = – 0,17x2 + x – 1,2 có ∆ = 12 – 4.(– 0,17).(– 1,2) = 0,184 > 0 nên f(x) có hai nghiệm phân biệt x1 ≈ 4,20 và x2 ≈ 1,68.
Ta có a = – 0,17 < 0 suy ra f(x) > 0 khi 1,68 < x < 4,20.
Vậy người phát cầu cần đứng cách lưới trong khoảng từ 1,68 m đến 4,20 m.
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đồ thị của hai hàm số bậc hai f(x) = ax2 + bx + c và g(x) = dx2 + ex + h như Hình 2.
A. Phương trình có hai nghiệm phân biệt là x = 1 và x = 6,
B. Phương trình có 1 nghiệm là x = l;
C. Phương trình có 1 nghiệm là x = 6;
D. Phương trình vô nghiệm.Câu 2:
Tìm các giá trị của tham số m để:
a) là một tam thức bậc hai âm với mọi ;
Câu 4:
Trong trường hợp nào tam thức bậc hai f(x) = ax2 + bx + c có và a < 0?
Câu 6:
Khẳng định nào đúng với phương trình
A. Phương trình có một nghiệm;
B. Phương trình vô nghiệm;
C. Tổng các nghiệm của phương trình là -7;
D. Các nghiệm của phương trình đều không bé hơn .
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Quy tắc đếm có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận