Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
b) Phương trình đường tròn ngoại tiếp tam giác OPR với O(0; 0), P(16; 0), R(0; 12).
Ta có: ⇒ = 16.0 + 0.12 = 0.
⇒ OP ⊥ OR.
Do đó tam giác OPR vuông tại O nên tâm đường tròn ngoại tiếp tam giác OPR là trung điểm của PR và bán kính R = OI.
Gọi I(x; y) là tâm đường tròn ngoại tiếp tam giác OPR.
Suy ra . Do đó tâm I(8; 6)
Bán kính R = OI mà suy ra
Vậy phương trình đường tròn ngoại tiếp tam giác OPR có tâm I(8; 6) bán kính R = 10 là: (x – 8)2 + (y – 6)2 = 100.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
c) Viết phương trình tiếp tuyến với (C) song song với đường thẳng 8x + 6y + 99 = 0.
Câu 2:
Lập phương trình đường tròn tiếp xúc với hai trục toạ độ Ox, Oy và đi qua điểm A(2; 1).
Câu 4:
Một cái cổng hình bán nguyệt rộng 6,8 m, cao 3,4m. Mặt đường dưới cổng được chia thành hai làn cho xe ra vào.
a) Viết phương trình mô phỏng cái cổng.
Câu 6:
c) (C) có tâm M(2; 3) và tiếp xúc với đường thẳng 3x – 4y + 9 = 0,
Câu 7:
Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm toạ độ tâm và bán kính của đường tròn đó.
a) x2 + y2 + 2x + 2y – 9 = 0;
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
28 câu Trắc nghiệm Mệnh đề có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
80 câu trắc nghiệm Vectơ cơ bản (P1)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
50 câu trắc nghiệm Thống kê nâng cao (P1)
về câu hỏi!