Câu hỏi:

12/07/2024 1,120

b) Một chiếc xe tải rộng 2,4 m và cao 2,5 m đi đúng làn đường quy định có thể đi qua cổng được hay không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Chiếc xe tải rộng 2,4 m; cao 2,5 m ta có toạ độ điểm xa nhất của xe tải so với tâm của cổng là điểm M(2,4; 2,5).

Ta có độ dài đoạn OM = OM OM(2,4; 2,5)

Vậy OM=2,42+2,523.5 suy ra độ dài đoạn thẳng OM = 3,5 m > R

Vì điểm xa nhất của xe tải lớn hơn bán kính đường tròn khi đi đúng làn đường xe tải không qua được cổng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương trình đường tròn (C) tiếp xúc với hai trục toạ độ Ox, Oy và đi qua điểm A(2; 1)

Giả sử đường tròn (C) có tâm I(a ; b) và bán kính là R.

(C) tiếp xúc với trục Ox suy ra R = d(I, Ox) = b .

(C) tiếp xúc với trục Oy suy ra R = d(I, Oy)a.

Suy ra a b

Vậy a = b hoặc a = - b

Trường hợp 1. a = b thì I(a; a) bán kính R = |a|

Ta có A  (C)  IA = R IA2 = R2

(2 – a)2 + (1 – a)2 = a2

4 – 4a + a2 + 1 – 2a + a2 = a2

a2 – 6a + 5 = 0

a = 1 hoặc a = 5

Với a = 1 thì đường tròn (C) có tâm I(1; 1) bán kính R = 1 có phương trình là:

(x – 1)2 + (y – 1)2 = 1

Với a = 5 thì đường tròn (C) có tâm I(5; 5) bán kính R = 5 có phương trình là:

(x – 5)2 + (y – 5)2 = 25

Trường hợp 2. a = – b thì I(a; – a) bán kính R = a

Ta có A  (C)  IA = R  IA2 = R2

(2 – a)2 + (1 + a)2 = a2

4 – 4a + a2 + 1 + 2a + a2 = a2

a2 – 2a + 5 = 0 (phương trình vô nghiệm)

Vậy có 2 đường tròn thoả mãn bài toán là (x – 1)2 + (y – 1)2 = 1 hoặc (x – 5)2 + (y – 5)2 = 25.

Lời giải

d) Đường tròn (C) có tâm I(3; 2) và đi qua điểm B(7; 4).

Suy ra đường tròn (C) có bán kính R = IB.

Ta có IB = IB  IB=(4;2) suy ra IB=42+22=25

Phương trình đường tròn (C) có tâm I(3; 2) và bán kính R = 25  là:

(x – 3)2 + (y – 2)2 = 20.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP