Câu hỏi:

14/09/2022 268

Cho hai bộ ba điểm thẳng hàng A, B, C; A', B', C'. Gọi giao điểm của AB' và A'B là A''; AC' và A'C là B''; BC' và B'C là C''. Chứng minh rằng ba điểm A'', B'', C'' thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hai bộ ba điểm thẳng hàng A, B, C; A', B', C'. Gọi giao điểm của AB' và A'B là A''; AC' và A'C là B''; (ảnh 1)

Trường hợp 1: A''C'' không đi qua X (X=ACA'C')

Kí hiệu Y=A''C''A'C';Z=A''C''AC; ta gọi:

B''=A''C''AC'. Ta cần chứng minh: A',B'',C' thẳng hàng.

Xét tam giác XYZ với đường thẳng đi qua ba điểm thảng hàng A',B'',C'.

A',B'',C' thẳng hàng A'XA'Y.B''YB''Z.CZCX=1 (1)

Xét tam giác XYZ với đường thẳng đi qua ba điểm thẳng hàng A',A'',B, ta có:

A'XA'Y.A''YA''Z.BZBX=1 (2)

Tam giác XYZ với đường thẳng đi qua ba điểm thẳng hàng B',C,C'', ta có:

CZCX.B'XB'Y.C''YC''Z=1  (3)

Tam giác XYZ với đường thẳng đi qua ba điểm thẳng hàng A,B'',C', ta có;

AZAX.B''YB''Z.C'XC'Y=1 (4)

Do A,A'',B' thẳng hàng nên A''YA''Z.AZAX.B'XB'Y=1 (5)

Do B,C'',C' thẳng hàng nên BZBX.C'XC'Y.C''YC''Z=1 (6)

Nhân (2), (3), (4) áp dụng (5), (6) ta suy ra (1)

Ta có điều phải chứng minh.

Trường hợp 2: A''C'' đi qua X

Bạn đọc tự xét trường hợp này.

Như vậy bản chất của cách 1 ví dụ 1 là định lí Papus. Từ cơ sở toán này, chúng ta đưa ra cách giải tổng quát hơn cách 1 trong ví dụ 1 như sau:

Cho hai bộ ba điểm thẳng hàng A, B, C; A', B', C'. Gọi giao điểm của AB' và A'B là A''; AC' và A'C là B''; (ảnh 2)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có một cách trồng cây như sau:

Trong một vườn cây có 20 cây. Hãy trồng thành 20 hàng, mỗi hàng có 4 cây. (ảnh 1)

Lời giải

Cách 1

Newton đưa ra cách giải như sau:

Trong một vườn cây có 9 cây. Hãy trồng thành 10 hàng, mỗi hàng có 3 cây. (ảnh 1)

Các hàng là: ABC,AYC',AXB',BXA',BYB',BZC',CYA',CZB',XYZ,A'B'C'.

Rõ ràng đây là một cách giải thú vị. ngoài cách giải này, chúng ta có cách giải khác như sau

Cách 2

Trong một vườn cây có 9 cây. Hãy trồng thành 10 hàng, mỗi hàng có 3 cây. (ảnh 2)

Các hàng là: ABC,AFE,AHD,CDE,CHK,CGF,BKE,BGD,FKD,EHG.

Bản chất của các cách trồng cây thẳng hàng này như thế nào? Mỗi cách trồng cây có một cơ sở toán học ẩn chứa đằng sau và các cách giải trên không phải ngoại lệ. Tuy nhiên có nhiều cách giải chỉ đưa ra được đáp án mà chưa tìm được cơ sở toán là bản chất của cách trồng cây vì đó là vấn đề rất phức tạp vượt quá khả năng của chúng tôi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay