Câu hỏi:

13/07/2024 25,803

Cổng chào của một thành phố có dạng hình parabol có khoảng cách giữa hai chân cổng là 192 m (Hình 3). Từ một điểm M trên thân cổng, người ta đo được khoảng cách đến mặt đất là 2 m và khoảng cách từ chân đường vuông góc vẽ từ M xuống mặt đất đến chân cổng gần nhất là 0,5 m. Tính chiều cao của cổng.

Cổng chào của một thành phố có dạng hình parabol có khoảng cách giữa hai chân cổng là (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn hệ tọa độ như hình vẽ:

Cổng chào của một thành phố có dạng hình parabol có khoảng cách giữa hai chân cổng là (ảnh 2)

Phương trình parabol (P) có dạng y2 = 2px.

Gọi chiều cao của cổng là h (m) OC = h

Ta có khoảng cách từ điểm M đến mặt đất là 2m nên MH = 2 OK = h – 2 và khoảng cách từ chân đường vuông góc vẽ từ M xuống mặt đất đến cổng gần nhất là 0,5 m nên AH = 0,5.

Ta lại có khoảng cách giữa hai chân cổng là 192 m nên AC = 192 : 2 = 96.

Khi đó tọa độ điểm A là A(h; 96)

Mà AH + CH = AC

CH = AC – AH = 96 – 0,5 = 95,5

M(h – 2; 95,5).

Vì các điểm M và A thuộc parabol nên tọa độ của M và A đều thỏa mãn phương trình y2 = 2px, ta có:

962 = 2ph (1) và 95,52 = 2p(h – 2) (2)

Chia vế với vế của (1) cho (2) ta được:

962=2ph95,52=2p(h2)96295,52=hh2 h = 2.96296295,52≈ 192,5 (m)

Vậy chiều cao của cổng khoảng 192,5 m.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c)  Parabol (P) đi qua điểm (1; 4) nên thay tọa độ (1; 4) vào phương trình : y2 = 2px, ta được: 42  = 2p. 1  p = 8.

 Phương trình parabol (P) là: y2 = 2.8x = 16x.

Vậy phương trình parabol (P) là: y2 = 16x.

d) Parabol (P) tiêu điểm Fp2;0 , phương trình đường chuẩn ∆ : x +  = 0.

Vì parabol (P) có khoảng cách từ tiêu điểm đến đường chuẩn bằng 8 nên:

d(F, Δ) = 8 p2+p212+02= 8 p = 8.

 Phương trình parabol (P) là: y2 = 2.8x = 16x.

Vậy phương trình parabol (P) là: y2 = 16x.

Lời giải

Vì parabol (P) có tiêu điểm cách đỉnh 5 cm  Tiêu điểm có tọa độ (5; 0)  p = 10

 Phương trình parabol (P): y2 = 20x.

Ta có điểm A(45; yA (P) nên thay tọa độ A vào phương trình (P), ta được:

yA2 = 20. 45  yA = 30

 AB = 2. 30 = 60 (cm).

Vậy khoảng cách AB là 60cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay