Câu hỏi:

19/10/2022 13,882

Hệ số của số hạng x10 trong khai triển (1 + x + x2 + x3)5 là:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có (1 + x + x2 + x3)5 = [1 + x + x2(1 + x)]5

         = [(1 + x)(1 + x2)]5 = (1 + x)5.(1 + x2)5.

Theo công thức nhị thức Newton, ta có:

A = (1 + x)5

= 15 + 5.14.x + 10.13.x2 + 10.12.x3 + 5.1.x4 + x5

= 1 + 5x + 10x2 + 10x3 + 5x4 + x5.

B = (1 + x2)5

= 15 + 5.14.x2 + 10.13.(x2)2 + 10.12.(x2)3 + 5.1.(x2)4 + (x2)5

= 1 + 5x2 + 10x4 + 10x6 + 5x8 + x10.

Suy ra (1 + x + x2 + x3)5 = A.B

Khi đó ta có số hạng chứa x10 trong khai triển (1 + x + x2 + x3)5 là:

xi.xj = x10 hay xi + j = x10 với xi là lũy thừa của số hạng trong A, xj là lũy thừa của số hạng trong B (i {0; 1; 2; 3; 4; 5} và j {0; 2; 4; 6; 8; 10}).

Do đó ta có bảng sau:

j

i

10

0

8

2

6

4

Từ bảng ta có số hạng chứa x10 trong khai triển là:

1.x10 + 10x2.5x8 + 5x4.10x6

= x10 + 50x10 + 50x10 = 101x10.

Vậy hệ số của số hạng chứa x10 trong khai triển (1 + x + x2 + x3)5 là 101.

Do đó ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tập hợp M = {1; 2; 3; 4}. Số tập con của tập M là:

Xem đáp án » 19/10/2022 2,160

Câu 2:

Số hạng chính giữa trong khai triển (x3 + xy)22 là:

Xem đáp án » 19/10/2022 1,038

Câu 3:

Cho biểu thức (2 + x)n, biết n là số nguyên dương thỏa mãn An3+2An2=100. Khi đó số hạng của x3 trong khai triển biểu thức (2 + x)n là:

Xem đáp án » 19/10/2022 252

Câu 4:

Tổng S=C50+3C51+32C52+33C53+34C54+35C55 bằng:

Xem đáp án » 19/10/2022 194

Bình luận


Bình luận