5 câu Trắc nghiệm Toán 10 chân trời sáng tạo Nhị thức Newton (Vận dụng) có đáp án
27 người thi tuần này 4.6 1.9 K lượt thi 5 câu hỏi 30 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài tập cuối chương 7 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường trò (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳn (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Số hạng tổng quát của khai triển (x3 + xy)22 là:
(với 0 ≤ k ≤ 22 và k ∈ ℤ)
(x3 + xy)22 có số mũ là 22 nên khai triển này có 23 số hạng.
Do đó số hạng chính giữa là số hạng thứ 12 ứng với k = 11.
Vậy số hạng chính giữa của khai triển là .
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta thấy tập hợp M có 4 phần tử.
• Mỗi tập con của M có k phần tử (với 1 ≤ k ≤ 4) là một tổ hợp chập k của 4 phần tử.
Do đó số tập con như vậy bằng .
• Mặt khác, có một tập con của M không có phần tử nào (tập rỗng).
Tức là, có tập con như vậy.
Do đó số tập con của tập hợp M là:
= 16 (tập con).
Vậy ta chọn phương án B.
Câu 3
A. –40;
B. –40x3;
C. 40x3;
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có
⇔ n(n – 1)(n – 2) + 2n(n – 1) = 100
⇔ n(n – 1)(n – 2 + 2) = 100
⇔ (n2 – n)n = 100
⇔ n3 – n2 – 100 = 0
⇔ n = 5 (thỏa mãn).
Khi đó ta có khai triển (2 + x)5.
(2 + x)5
= 25 + 5.24.x + 10.23.x2 + 10.22.x3 + 5.2.x4 + x5
= 32 + 80x + 80x2 + 40x3 + 10x4 + x5
Vậy số hạng của x3 trong khai triển biểu thức (2 + x)5 là 40x3.
Do đó ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Theo công thức nhị thức Newton, ta có:
Cho x = 3, ta có:
.
Suy ra .
Vậy ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có (1 + x + x2 + x3)5 = [1 + x + x2(1 + x)]5
= [(1 + x)(1 + x2)]5 = (1 + x)5.(1 + x2)5.
Theo công thức nhị thức Newton, ta có:
⦁ A = (1 + x)5
= 15 + 5.14.x + 10.13.x2 + 10.12.x3 + 5.1.x4 + x5
= 1 + 5x + 10x2 + 10x3 + 5x4 + x5.
⦁ B = (1 + x2)5
= 15 + 5.14.x2 + 10.13.(x2)2 + 10.12.(x2)3 + 5.1.(x2)4 + (x2)5
= 1 + 5x2 + 10x4 + 10x6 + 5x8 + x10.
Suy ra (1 + x + x2 + x3)5 = A.B
Khi đó ta có số hạng chứa x10 trong khai triển (1 + x + x2 + x3)5 là:
xi.xj = x10 hay xi + j = x10 với xi là lũy thừa của số hạng trong A, xj là lũy thừa của số hạng trong B (i ∈ {0; 1; 2; 3; 4; 5} và j ∈ {0; 2; 4; 6; 8; 10}).
Do đó ta có bảng sau:
|
j |
i |
|
10 |
0 |
|
8 |
2 |
|
6 |
4 |
Từ bảng ta có số hạng chứa x10 trong khai triển là:
1.x10 + 10x2.5x8 + 5x4.10x6
= x10 + 50x10 + 50x10 = 101x10.
Vậy hệ số của số hạng chứa x10 trong khai triển (1 + x + x2 + x3)5 là 101.
Do đó ta chọn phương án C.