Cho tam giác ABC có trực tâm H và tâm đường tròn ngoại tiếp O. Biết AD là đường kính của (O), M là trung điểm của BC. Chọn khẳng định đúng?
Cho tam giác ABC có trực tâm H và tâm đường tròn ngoại tiếp O. Biết AD là đường kính của (O), M là trung điểm của BC. Chọn khẳng định đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có hình vẽ:
H là trực tâm tam giác ABC nên BH ⊥ AC.
Mà AC ⊥ DC (do AD là đường kính).
Suy ra BH // CD.
Tương tự ta cũng có CH // BD.
Suy ra BHCD là hình bình hành.
Do đó trung điểm M của BC là giao điểm của 2 đường chéo của hình bình hành BHCD nên M là trung điểm của HD.
Xét tam giác AHD có:
M là trung điểm của HD, O là trung điểm của AD
Suy ra MO là đường trung bình tam giác AHD.
Do đó OM = AH hay AH = 2OM.
Suy ra .Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Tam giác ABC là tam giác đều có cạnh bằng 2a, và M, N, P lần lượt là trung điểm của AB, AC và BC nên khi đó có 3 tam giác đều AMN, MBP, NCP cạnh a có cạnh không trùng nhau.
Tổng có 9 cạnh có độ dài bằng a.
Cứ với mỗi cạnh ta lại có hai vectơ đối nhau (chẳng hạn cạnh với cạnh AM ta có ), nên có tất cả 18 vectơ có độ dài là a.
Lời giải
Đáp án đúng là: C
Mỗi cặp đoạn thẳng bằng nhau sẽ cho ta 2 cặp vectơ bằng nhau.
Có 5 cặp đoạn thẳng bằng nhau là: AF và EF; AB và BD, AB và DC, BD và DC, AD và BC.
Do đó ta có: 5 . 2 = 10 cặp vectơ bằng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.