5 câu Trắc nghiệm Toán 10 chân trời sáng tạo Khái niệm vectơ có đáp án (Phần 2) (Vận dụng)
21 người thi tuần này 4.6 1.8 K lượt thi 5 câu hỏi 60 phút
🔥 Đề thi HOT:
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Không gian mẫu và biến cố có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: A
Từ I kẻ đường thẳng song song với đường thẳng AB, cắt đường tròn tạo thành 1 đường kính MN.
Ta thấy chỉ có 1 điểm K thỏa mãn sao cho tại 1 trong 2 vị trí là K trùng M hoặc K trùng N.
Lời giải
Đáp án đúng là: D
Tam giác ABC là tam giác đều có cạnh bằng 2a, và M, N, P lần lượt là trung điểm của AB, AC và BC nên khi đó có 3 tam giác đều AMN, MBP, NCP cạnh a có cạnh không trùng nhau.
Tổng có 9 cạnh có độ dài bằng a.
Cứ với mỗi cạnh ta lại có hai vectơ đối nhau (chẳng hạn cạnh với cạnh AM ta có ), nên có tất cả 18 vectơ có độ dài là a.
Lời giải
Đáp án đúng là: C
Mỗi cặp đoạn thẳng bằng nhau sẽ cho ta 2 cặp vectơ bằng nhau.
Có 5 cặp đoạn thẳng bằng nhau là: AF và EF; AB và BD, AB và DC, BD và DC, AD và BC.
Do đó ta có: 5 . 2 = 10 cặp vectơ bằng nhau.
Lời giải
Đáp án đúng là: C
• Ta thấy tam giác AMI vuông tại I nên cạnh huyền AM > MI nên . Do đó phương án A là sai.
• AM và CM là hai đường trung tuyến của tam giác ABC nên là hai vectơ không cùng phương. Do đó phương án B có là sai.
• Ta có M là trọng tâm tam giác ABC nên IM = IB.
Mà I là tâm hình vuông ABCD nên I là trung điểm BD.
Do đó IB = ID
Suy ra ID = 3IM hay nên phương án C là đúng.
• Ta có là hai vectơ không cùng phương nên là sai.
Vậy ta chọn phương án C.
Lời giải
Đáp án đúng là: B
Ta có hình vẽ:
H là trực tâm tam giác ABC nên BH ⊥ AC.
Mà AC ⊥ DC (do AD là đường kính).
Suy ra BH // CD.
Tương tự ta cũng có CH // BD.
Suy ra BHCD là hình bình hành.
Do đó trung điểm M của BC là giao điểm của 2 đường chéo của hình bình hành BHCD nên M là trung điểm của HD.
Xét tam giác AHD có:
M là trung điểm của HD, O là trung điểm của AD
Suy ra MO là đường trung bình tam giác AHD.
Do đó OM = AH hay AH = 2OM.
Suy ra .361 Đánh giá
50%
40%
0%
0%
0%