Câu hỏi:

28/10/2022 428

Cho tam giác ABC cân tại A có trung tuyến BD và CE cắt nhau tại G. Khẳng định nào sau đây là sai?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Media VietJack

Vì D là trung điểm của AC nên AD = DC = \(\frac{1}{2}\)AC.

Vì E là trung điểm của AB nên AE = EB = \(\frac{1}{2}\)AB.

Mà AB = AC (do DABC cân tại A)

Suy ra AE = AD = BE = CD. Do đó phương án C là đúng.

Xét DEBC và DDCB có:

BE = CD (chứng minh trên),

\(\widehat {DCB} = \widehat {EBC}\)(do DABC cân tại A),

BC là cạnh chung

Do đó DEBC = DDCB (c.g.c)

Suy ra EC = BD (hai cạnh tương ứng)

Xét DABC có trung tuyến BD và CE cắt nhau tại G nên G là trọng tâm tam giác ABC.

Suy ra EG = \(\frac{1}{3}\)CE và GD = \(\frac{1}{3}\)BD

Mà BD = EC (chứng minh trên) nên EG = \(\frac{1}{3}\)BD hay BD = 3EG

Do đó phương án D là đúng.

• Ta có EG = \(\frac{1}{3}\)CE và GD = \(\frac{1}{3}\)BD

Mà BD = EC nên EG = GD.

Suy ra G nằm trên đường trung trực của ED.

Lại có AE = AD nên A cũng nằm trên đường trung trực của ED.

Do đó AG là đường trung trực của ED nên phương án A là đúng.

Xét DBCG, theo bất đẳng thức trong tam giác ta có:

BG + CG > BC

Suy ra \(\frac{1}{2}\)BG + \(\frac{1}{2}\)CG > \(\frac{1}{2}\)BC

Mà GD = \(\frac{1}{2}\)BG, GE = \(\frac{1}{2}\)CG (do G là trọng tâm tam giác ABC).

Do đó GD + GE > \(\frac{1}{2}\)BC nên phương án B là sai.

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ∆ABC có AD, BE, CF là ba đường trung tuyến và trọng tâm G.

Cho các phát biểu sau:

(I) \[AD + BE + CF > \frac{3}{4}\left( {AB + BC + AC} \right)\];                 

(II) AD + BE + CF < AB + BC + AC.

Chọn khẳng định đúng:

Xem đáp án » 28/10/2022 260

Câu 2:

Tam giác ABC có trung tuyến CI bằng nửa cạnh AB. Số đo góc ACB là:

Xem đáp án » 28/10/2022 165

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store