Câu hỏi:

29/10/2022 178

Cho tam giác DEG có \(\widehat G = \widehat D + \widehat E\). Hai tia phân giác DA, EB cắt nhau tại H. Số đo góc AHB là:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Media VietJack

Vì DA là phân giác của góc GDE nên \(\widehat {GDA} = \widehat {E{\rm{D}}A} = \frac{1}{2}\widehat {G{\rm{D}}E}\).

Vì EB là phân giác của góc DEG nên \(\widehat {DEB} = \widehat {{\rm{GEB}}} = \frac{1}{2}\widehat {GED}\).

Do đó \(\widehat {E{\rm{D}}A} + \widehat {DEB} = \frac{1}{2}(\widehat {G{\rm{D}}E} + \widehat {{\rm{GED}}})\)

Xét DDGE có \(\widehat {GE{\rm{D}}} + \widehat {G{\rm{D}}E} + \widehat {EG{\rm{D}}} = 180^\circ \)(tổng ba góc trong một tam giác)

\(\widehat {EG{\rm{D}}} = \widehat {GE{\rm{D}}} + \widehat {G{\rm{D}}E}\) (giả thiết)

Suy ra \(\widehat {EG{\rm{D}}} = \widehat {GE{\rm{D}}} + \widehat {G{\rm{D}}E} = 180^\circ :2 = 90^\circ \)

Do đó \(\widehat {E{\rm{D}}A} + \widehat {DEB} = \frac{1}{2}(\widehat {G{\rm{D}}E} + \widehat {{\rm{GED}}}) = \frac{1}{2}.90^\circ = 45^\circ \).

Xét DDHE có \(\widehat {DHE} + \widehat {DEH} + \widehat {H{\rm{D}}E} = 180^\circ \)(tổng ba góc trong một tam giác)

Suy ra \(\widehat {DHE} = 180^\circ - (\widehat {DEH} + \widehat {H{\rm{D}}E}) = 180^\circ - 45^\circ = 135^\circ \).

Lại có \(\widehat {AHB} = \widehat {DHE}\) (hai góc đối đỉnh)

Do đó \(\widehat {AHB} = 135^\circ \)

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có các đường phân giác cắt nhau tại I. Biết \(\widehat {BIC} = 126^\circ .\) Khi đó \(\widehat {BAI}\) bằng:

Xem đáp án » 29/10/2022 673

Câu 2:

Cho ΔABC cân tại A. Gọi G là trọng tâm của tam giác, I là giao điểm của các đường phân giác trong tam giác. Khẳng định nào đúng?

Xem đáp án » 29/10/2022 411

Câu 3:

Cho tam giác ABC có AH BC và \(\widehat {BAH} = 2\widehat {BCA}\). Tia phân giác của góc B cắt AC tại E, tia phân giác của góc BAH cắt BE ở I. Số đo góc BEC

Xem đáp án » 29/10/2022 311

Câu 4:

Cho tam giác DEG có \(\widehat G = \frac{1}{3}\widehat D = \frac{1}{5}\widehat E\). Vẽ các đường phân giác DM, EN. Số đo góc GMD là:

Xem đáp án » 29/10/2022 261

Câu 5:

Cho tam giác ABC có các tia phân giác cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB lại E, cắt AC tại F. Biết BE = 1 cm, CF = 2 cm. Độ dài đoạn EF là:

Xem đáp án » 29/10/2022 193

Câu 6:

Cho tam giác AOM có \(\widehat A = 52^\circ \). Ba đường phân giác cắt nhau tại I. Số đo góc MIO là:

Xem đáp án » 29/10/2022 162

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store