Câu hỏi:

01/11/2022 1,809 Lưu

Từ phương trình 5sin2x16sinxcosx+16=0 , ta tìm được sinx+π4  có giá trị bằng:

A. 22.
B. 22.
C.1
D. ±22.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đặt t=sinxcosx=2sinxπ4 . Điều kiện 2t2.

Ta có t2=sinxcosx2=sin2x+cos2x2.sinxcosxsin2x=1t2.

Phương trình đã cho trở thành 51t216t+16=0t=1t=215 loaïi.

Với t=1sinxcosx=1.(*)    

Mặt khác sinx+cosx2+sinxcosx2=2 , kết hợp với (*) suy ra 

sinx+cosx2+1=2sinx+cosx=±1sinx+π4=±22. Chọn D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

m+1sinx+2m=0m+1sinx=m2sinx=m2m+1.

Để phương trình có nghiệm 1m2m+11

01+m2m+1m2m+1102m1m+103m+10m12m<1m>1m12 là giá trị cần tìm. Chọn B

Lời giải

Ta có cotx=3cotx=cotπ6x=π6+kπ k.

Theo giả thiết, ta có 0π6+kπ2018πxap xi16k2017,833

3kk0;1;...;2017. Vậy có tất cả 2018 giá trị nguyên của k tương ứng với có 2018 nghiệm thỏa mãn yêu cầu bài toán. Chọn D

Câu 3

A.x=π6+kπx .
B.x=π3+kπ .
C. x=π3+kπ.

D.x=π6+kπ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. x .
B. x=arcsin32+k2πx=πarcsin32+k2πk
C. x=arcsin32+k2πx=arcsin32+k2πk

D.x

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP