Câu hỏi:

05/11/2022 253

Cho tam giác QJN cân tại Q có QR là tia phân giác góc JQN (R JN). Trên QR lấy điểm S. Tam giác SJN là tam giác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Cho tam giác QJN cân tại Q có QR là tia phân giác góc JQN (R thuộc JN). Trên QR lấy điểm S. (ảnh 1)

Tam giác JQN cân tại Q nên QJ = QN (tính chất)

Xét ∆JQR và ∆NQR có

QJ = QN

JQR^=NQR^ (QR là phân giác góc JQN)

QR là cạnh chung

Suy ra ∆JQR = ∆NQR (c.g.c)

Do đó JR = NR (hai cạnh tương ứng) suy ra R là trung điểm của JN (1)

JRQ^=NRQ^ (hai góc tương ứng)

JRQ^=NRQ^=1800 (kề bù)

Suy ra JRQ^=NRQ^=90°

Do đó QR JN tại R (2)

Từ (1) và (2) suy ra QR là đường trung trực của JN.

S QR (giả thiết) suy ra SJ = SN (tính chất đường trung trực)

Do đó tam giác SJN cân tại S.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cho tam giác ABC vuông tại A có AB < AC, kẻ đường phân giác BD của góc ABC (ảnh 1)

Xét hai tam giác vuông BAD và BMD có:

BD là cạnh chung

ABD^=MBD^ (vì BD là tia phân giác góc ABM)

Suy ra ∆BAD = ∆BMD (cạnh huyền – góc nhọn)

Do đó: BA = BM; AD = MD (2 cạnh tương ứng)

Vì BA = BM nên B thuộc đường trung trực của AM

AD = MD nên D thuộc đường trung trực của AM

Suy ra BD là đường trung trực của AM.

Vậy AB = AM là khẳng định sai.

Câu 2

Cho điểm M thuộc đường trung trực của đoạn thẳng AB sao cho góc MAB bằng 60°. Khẳng định đúng là

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Cho điểm M thuộc đường trung trực của đoạn thẳng AB sao cho góc MAB bằng 60 độ  (ảnh 1)

M thuộc đường trung trực của đoạn thẳng AB nên MA = MB (tính chất đường trung trực)

Do đó tam giác MAB cân tại M

MAB^=60° nên tam giác MAB đều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP