Câu hỏi:

06/11/2022 2,014

Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {3; - 2} \right),\,\,\vec b = \left( {1;4} \right)\). Tọa độ của \(\vec c\) thỏa mãn \(\vec c = 5\vec a + 2\vec b\) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Ta có:

\(5\vec a = \left( {5.3;5.\left( { - 2} \right)} \right) = \left( {15; - 10} \right)\);

\(2\vec b = \left( {2.1;2.4} \right) = \left( {2;8} \right)\).

Suy ra \(\vec c = 5\vec a + 2\vec b = \left( {15 + 2; - 10 + 8} \right) = \left( {17; - 2} \right)\).

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có:

\(\overrightarrow {AB} = \left( {1 - 2;1 - 5} \right) = \left( { - 1; - 4} \right)\).

Suy ra \(3\overrightarrow {AB} = \left( {3.\left( { - 1} \right);3.\left( { - 4} \right)} \right) = \left( { - 3; - 12} \right)\).

\(\overrightarrow {AC} = \left( {3 - 2;3 - 5} \right) = \left( {1; - 2} \right)\).

Suy ra \(2\overrightarrow {AC} = \left( {2.1;2.\left( { - 2} \right)} \right) = \left( {2; - 4} \right)\).

Khi đó \(\overrightarrow {AE} = 3\overrightarrow {AB} - 2\overrightarrow {AC} = \left( { - 3 - 2; - 12 - \left( { - 4} \right)} \right) = \left( { - 5; - 8} \right)\).

Lại có \(\overrightarrow {AE} = \left( {{x_E} - 2;{y_E} - 5} \right)\).

Suy ra \(\left\{ \begin{array}{l}{x_E} - 2 = - 5\\{y_E} - 5 = - 8\end{array} \right.\)

Vì vậy \(\left\{ \begin{array}{l}{x_E} = - 3\\{y_E} =  - 3\end{array} \right.\)

Khi đó tọa độ E(–3; –3).

Vậy ta chọn phương án B.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có C(xC; yC) Ox.

Suy ra tọa độ C(xC; 0).

Ta có \(\overrightarrow {CA} = \left( {2 - {x_C};3} \right),\,\,\overrightarrow {CB} = \left( { - 2 - {x_C};1} \right)\).

Ta có tam giác ABC vuông tại C khi và chỉ khi \(\overrightarrow {CA} \bot \overrightarrow {CB} \).

Suy ra (2 – xC).(–2 – xC) + 3.1 = 0

Do đó –(2 – xC)(2 + xC) + 3 = 0

Vì vậy \( - \left( {4 - x_C^2} \right) + 3 = 0\)

Suy ra \(x_C^2 - 1 = 0\)

Khi đó xC = 1 hoặc xC = –1.

Vậy tọa độ C(1; 0) hoặc C(–1; 0).

Vậy ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {2;1} \right),\,\,\vec b = \left( {3;4} \right),\,\,\vec c = \left( { - 7;2} \right)\). Nếu \(\vec x - 2\vec a = \vec b - 3\vec c\) thì:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP