Câu hỏi:

06/11/2022 1,478

Cho tam giác ABC có tọa độ đỉnh B(4; –3). Đường trung tuyến AM có phương trình \(\left\{ \begin{array}{l}x = 1 + 3t\\y = - 2 - 7t\end{array} \right.\). Đường cao AH có phương trình 2x + 5y + 66 = 0. Khi đó phương trình đường trung trực của cạnh AB có phương trình là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Media VietJack

Ta có A AM.

Suy ra tọa độ A(1 + 3t; –2 – 7t).

Lại có A AH.

Suy ra 2(1 + 3t) + 5(–2 – 7t) + 66 = 0.

Do đó –29t + 58 = 0.

Vì vậy –29t = –58.

Khi đó t = 2.

Suy ra tọa độ A(7; –16).

Gọi I là trung điểm của cạnh AB.

Suy ra \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2} = \frac{{7 + 4}}{2} = \frac{{11}}{2}\\{y_I} = \frac{{{y_A} + {y_B}}}{2} = \frac{{ - 16 - 3}}{2} = - \frac{{19}}{2}\end{array} \right.\)

Khi đó tọa độ \(I\left( {\frac{{11}}{2}; - \frac{{19}}{2}} \right)\).

Ta có \(\overrightarrow {AB} = \left( { - 3;13} \right)\).

Đường trung trực d của cạnh AB đi qua điểm \(I\left( {\frac{{11}}{2}; - \frac{{19}}{2}} \right)\) và có vectơ pháp tuyến \(\overrightarrow {AB} = \left( { - 3;13} \right)\).

Suy ra phương trình d: \( - 3\left( {x - \frac{{11}}{2}} \right) + 13\left( {y + \frac{{19}}{2}} \right) = 0\).

3x – 13y – 140 = 0.

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Media VietJack

Thế tọa độ điểm M(4; 5) vào phương trình ∆, ta được: \(\left\{ \begin{array}{l}4 = 2 - 3t\\5 = 1 + 2t\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}t = - \frac{2}{3}\\t = 2\end{array} \right.\)

Suy ra M(4; 5) ∆.

Gọi H là hình chiếu của M lên ∆.

Ta có H ∆. Suy ra tọa độ H(2 – 3t; 1 + 2t).

Ta có \(\overrightarrow {MH} = \left( { - 2 - 3t; - 4 + 2t} \right)\).

Đường thẳng ∆ có vectơ chỉ phương \(\vec u = \left( { - 3;2} \right)\).

Ta có \(\overrightarrow {MH} \bot \vec u\).

Suy ra \(\overrightarrow {MH} .\vec u = 0\).

Khi đó (–2 – 3t).(–3) + (–4 + 2t).2 = 0.

Vì vậy 13t – 2 = 0.

Suy ra \(t = \frac{2}{{13}}\).

Do đó tọa độ \(H\left( {\frac{{20}}{{13}};\frac{{17}}{{13}}} \right)\).

Vậy hoành độ hình chiếu H của điểm M lên đường thẳng ∆ là: \(\frac{{20}}{{13}} \approx 1,538\).

Vậy ta chọn phương án D.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Quan sát hình vẽ, ta thấy đường thẳng d đi qua hai điểm có tọa độ (0; 1) và (4; 5).

Suy ra phương trình d: \(\frac{{x - 0}}{{4 - 0}} = \frac{{y - 1}}{{5 - 1}}\)

\( \Leftrightarrow \frac{x}{4} = \frac{{y - 1}}{4}\)

x = y – 1

y = x – 1.

Ta có: 15 giờ ứng với x = 15.

Với x = 15, ta có y = 15 – 1 = 14 (lít nước).

Vậy sau 15 giờ, bể nước chứa 14 lít nước.

Do đó ta chọn phương án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hai điểm A(–2; 1), B(3; 5) và đường thẳng d: \(\left\{ \begin{array}{l}x = - 5 + 2t\\y = 9 - 5t\end{array} \right.\). Tọa độ của điểm H d thỏa mãn \(\left| {\overrightarrow {HA} - 2\overrightarrow {HB} } \right|\) đạt giá trị nhỏ nhất là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay