Câu hỏi:

06/11/2022 315

Đường thẳng d trong hình bên biểu thị tổng lít nước được bơm vào một bể nước theo thời gian (đơn vị: giờ).

Media VietJack

Tổng lít nước mà bể đó chứa sau 15 giờ bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Quan sát hình vẽ, ta thấy đường thẳng d đi qua hai điểm có tọa độ (0; 1) và (4; 5).

Suy ra phương trình d: \(\frac{{x - 0}}{{4 - 0}} = \frac{{y - 1}}{{5 - 1}}\)

\( \Leftrightarrow \frac{x}{4} = \frac{{y - 1}}{4}\)

x = y – 1

y = x – 1.

Ta có: 15 giờ ứng với x = 15.

Với x = 15, ta có y = 15 – 1 = 14 (lít nước).

Vậy sau 15 giờ, bể nước chứa 14 lít nước.

Do đó ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Media VietJack

Ta có A AM.

Suy ra tọa độ A(1 + 3t; –2 – 7t).

Lại có A AH.

Suy ra 2(1 + 3t) + 5(–2 – 7t) + 66 = 0.

Do đó –29t + 58 = 0.

Vì vậy –29t = –58.

Khi đó t = 2.

Suy ra tọa độ A(7; –16).

Gọi I là trung điểm của cạnh AB.

Suy ra \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2} = \frac{{7 + 4}}{2} = \frac{{11}}{2}\\{y_I} = \frac{{{y_A} + {y_B}}}{2} = \frac{{ - 16 - 3}}{2} = - \frac{{19}}{2}\end{array} \right.\)

Khi đó tọa độ \(I\left( {\frac{{11}}{2}; - \frac{{19}}{2}} \right)\).

Ta có \(\overrightarrow {AB} = \left( { - 3;13} \right)\).

Đường trung trực d của cạnh AB đi qua điểm \(I\left( {\frac{{11}}{2}; - \frac{{19}}{2}} \right)\) và có vectơ pháp tuyến \(\overrightarrow {AB} = \left( { - 3;13} \right)\).

Suy ra phương trình d: \( - 3\left( {x - \frac{{11}}{2}} \right) + 13\left( {y + \frac{{19}}{2}} \right) = 0\).

3x – 13y – 140 = 0.

Vậy ta chọn phương án B.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Media VietJack

Thế tọa độ điểm M(4; 5) vào phương trình ∆, ta được: \(\left\{ \begin{array}{l}4 = 2 - 3t\\5 = 1 + 2t\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}t = - \frac{2}{3}\\t = 2\end{array} \right.\)

Suy ra M(4; 5) ∆.

Gọi H là hình chiếu của M lên ∆.

Ta có H ∆. Suy ra tọa độ H(2 – 3t; 1 + 2t).

Ta có \(\overrightarrow {MH} = \left( { - 2 - 3t; - 4 + 2t} \right)\).

Đường thẳng ∆ có vectơ chỉ phương \(\vec u = \left( { - 3;2} \right)\).

Ta có \(\overrightarrow {MH} \bot \vec u\).

Suy ra \(\overrightarrow {MH} .\vec u = 0\).

Khi đó (–2 – 3t).(–3) + (–4 + 2t).2 = 0.

Vì vậy 13t – 2 = 0.

Suy ra \(t = \frac{2}{{13}}\).

Do đó tọa độ \(H\left( {\frac{{20}}{{13}};\frac{{17}}{{13}}} \right)\).

Vậy hoành độ hình chiếu H của điểm M lên đường thẳng ∆ là: \(\frac{{20}}{{13}} \approx 1,538\).

Vậy ta chọn phương án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP