Câu hỏi:
06/11/2022 720Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆1 và ∆2 có vectơ pháp tuyến lần lượt là \({\vec n_1},\,\,{\vec n_2}\). Khi đó ∆1 cắt ∆2 nhưng không vuông góc với ∆2 khi và chỉ khi:
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Ta có ∆1 cắt ∆2 nhưng không vuông góc với ∆2 khi và chỉ khi \({\vec n_1}\) không cùng phương với \({\vec n_2}\) và \({\vec n_1}.{\vec n_2} \ne 0\).
Vậy ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường thẳng d1, d2 có vectơ pháp tuyến lần lượt là \[{\vec n_1} = \left( {a;b} \right),\,\,{\vec n_2} = \left( {c;d} \right)\]. Kết luận nào sau đây đúng?
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1, d2 lần lượt có vectơ chỉ phương là \({\vec a_1}\), \({\vec a_2}\). Gọi M là một điểm nằm trên đường thẳng d1. Khi đó d1 trùng d2 khi và chỉ khi:
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x + 3y + 5 = 0 và A(1; –3). Khoảng cách từ điểm A đến đường thẳng d là:
Câu 5:
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆1 và ∆2 có vectơ pháp tuyến lần lượt là \({\vec n_1},\,\,{\vec n_2}\). Nếu \({\vec n_1}.{\vec n_2} = 0\) thì:
Câu 6:
Cho hai đường thẳng ∆1 và ∆2 có phương trình lần lượt là ax + by + c = 0 và dx + ey + f = 0. Xét hệ \(\left\{ \begin{array}{l}ax + by + c = 0\\dx + ey + f = 0\end{array} \right.\). Khi đó ∆1 cắt ∆2 khi và chỉ khi:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
23 câu Trắc nghiệm Toán 10 (có đáp án): Phương trình chứa căn
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận