Câu hỏi:

06/11/2022 8,775

Phương trình nào sau đây là phương trình đường tròn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Phương trình đường tròn có dạng: x2 + y2 – 2ax – 2by + c = 0 (a2 + b2 – c > 0).

Ta thấy phương trình ở phương án A, D không có dạng trên nên 2 phương trình đó không phải là phương trình đường tròn.

Do đó ta loại phương án A, D.

Ta có 3x2 + 3y2 – 3x + 3y + 12 = 0.

x2 + y2 – x + 3y + 4 = 0.

Ta có: \(\left\{ \begin{array}{l} - 2a = - 1\\ - 2b = 3\\c = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = - \frac{3}{2}\\c = 4\end{array} \right.\)

Suy ra \({a^2} + {b^2} - c = {\left( {\frac{1}{2}} \right)^2} + {\left( { - \frac{3}{2}} \right)^2} - 4 = - \frac{3}{2} < 0\).b

Do đó phương trình ở phương án C không phải là phương trình đường tròn.

Vì vậy ta loại phương án C.

Ta có 2x2 + 2y2 – 2y = 0.

x2 + y2 – y = 0.

Ta có: \(\left\{ \begin{array}{l} - 2a = 0\\ - 2b = - 1\\c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = \frac{1}{2}\\c = 0\end{array} \right.\)

Suy ra \({a^2} + {b^2} - c = {0^2} + {\left( {\frac{1}{2}} \right)^2} - 0 = \frac{1}{4} > 0\).

Do đó phương trình ở phương án B là phương trình đường tròn.

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Phương trình đường tròn (C): x2 + y2 – 2ax – 2by + c = 0 có bán kính được tính bởi công thức: \(R = \sqrt {{a^2} + {b^2} - c} \).

Vậy ta chọn phương án B.

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Phương trình đường tròn (C) có dạng: (x – a)2 + (y – b)2 = R2, với tâm I(a; b), bán kính R > 0.

Ta thấy chỉ có phương trình ở phương án A thỏa mãn điều kiện trên.

Vậy ta chọn phương án A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP