Câu hỏi:
29/11/2022 253Cho hàm số \(y = f\left( x \right) = \sqrt {\tan x + \cot x} \). Giá trị \(f'\left( {\frac{\pi }{4}} \right)\) bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn C.
\(y = \sqrt {\tan x + \cot x} \Rightarrow {y^2} = \tan x + \cot x \Rightarrow y'.2y = \frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}\).
\( \Rightarrow y' = \frac{1}{{2\sqrt {\tan x + \cot x} }}\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)\).
\(f'\left( {\frac{\pi }{4}} \right) = \frac{1}{{2\sqrt {\tan \frac{\pi }{4} + \cot \frac{\pi }{4}} }}\left( {\frac{1}{{{{\cos }^2}\left( {\frac{\pi }{4}} \right)}} - \frac{1}{{{{\sin }^2}\left( {\frac{\pi }{4}} \right)}}} \right) = \frac{1}{{2\sqrt 2 }}\left( {2 - 2} \right) = 0\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho \[f\left( x \right) = {\cos ^2}x - {\sin ^2}x\]. Giá trị \[f'\left( {\frac{\pi }{4}} \right)\] bằng:
Câu 2:
Cho hàm số \(y = f\left( x \right) = \frac{{\cos x}}{{1 + 2\sin x}}\). Chọn kết quả SAI
Câu 3:
Cho hàm số \(y = f\left( x \right) = {\sin ^3}5x.{\cos ^2}\frac{x}{3}\). Giá trị đúng của \(f'\left( {\frac{\pi }{2}} \right)\) bằng
Câu 4:
Cho hàm số \(y = f(x) = \frac{{\cos x}}{{1 - \sin x}}\). Giá trị biểu thức \(f'\left( {\frac{\pi }{6}} \right) - f'\left( { - \frac{\pi }{6}} \right)\) là
Câu 6:
Cho hàm số \(y = f\left( x \right) = \frac{1}{{\sqrt {\sin x} }}\). Giá trị \(f'\left( {\frac{\pi }{2}} \right)\) bằng:
Câu 7:
Tính \(\frac{{f'\left( 1 \right)}}{{\varphi '\left( 0 \right)}}\). Biết rằng : \(f(x) = {x^2}\) và \(\varphi (x) = 4x + \sin \frac{{\pi x}}{2}\).
về câu hỏi!