Câu hỏi:

29/11/2022 1,688 Lưu

Cho hàm số \(y = f\left( x \right) = \frac{1}{{\sqrt {\sin x} }}\). Giá trị \(f'\left( {\frac{\pi }{2}} \right)\) bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn C.

\(y = \frac{1}{{\sqrt {\sin x} }} \Rightarrow {y^2} = \frac{1}{{\sin x}} \Rightarrow y'2y = \frac{{ - \cos x}}{{{{\sin }^2}x}}\).

\[ \Rightarrow y' = \frac{1}{{2y}}.\left( {\frac{{ - \cos x}}{{{{\sin }^2}x}}} \right) = \frac{1}{{\frac{2}{{\sqrt {\sin x} }}}}\left( {\frac{{ - \cos x}}{{{{\sin }^2}x}}} \right) = \frac{{ - \sqrt {\sin x} }}{2}.\frac{{\cos x}}{{{{\sin }^2}x}}\].

\(f'\left( {\frac{\pi }{2}} \right) = \frac{{ - \sqrt {\sin \left( {\frac{\pi }{2}} \right)} }}{2}.\frac{{\cos \left( {\frac{\pi }{2}} \right)}}{{{{\sin }^2}\left( {\frac{\pi }{2}} \right)}} = \frac{{ - 1}}{2}.\frac{0}{1} = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Chọn C.

Ta có:\(f\left( x \right) = \cos 2x \Rightarrow f'\left( x \right) = - 2\sin 2x\). Do đó \[f'\left( {\frac{\pi }{4}} \right) = - 2\]

Lời giải

Hướng dẫn giải:

Chọn B.

\[f'\left( x \right) = \frac{1}{{{{\cos }^2}\left( {x - \frac{{2\pi }}{3}} \right)}} \Rightarrow f'\left( 0 \right) = \frac{1}{{\frac{1}{4}}} = 4\].

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP