Câu hỏi:

29/11/2022 1,786 Lưu

Hàm số \[y = f\left( x \right) = \frac{2}{{\cot \left( {\pi x} \right)}}\]\(f'\left( 3 \right)\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn C.

Ta có: \[f'\left( x \right) = - \frac{{2{{\left[ {\cot \left( {\pi x} \right)} \right]}^\prime }}}{{{{\cot }^2}\left( {\pi x} \right)}} = 2\pi \frac{{1 + {{\cot }^2}\left( {\pi x} \right)}}{{{{\cot }^2}\left( {\pi x} \right)}}\] \( \Rightarrow f'\left( 3 \right) = 2\pi \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Chọn C.

Ta có:\(f\left( x \right) = \cos 2x \Rightarrow f'\left( x \right) = - 2\sin 2x\). Do đó \[f'\left( {\frac{\pi }{4}} \right) = - 2\]

Lời giải

Hướng dẫn giải:

Chọn B.

\[f'\left( x \right) = \frac{1}{{{{\cos }^2}\left( {x - \frac{{2\pi }}{3}} \right)}} \Rightarrow f'\left( 0 \right) = \frac{1}{{\frac{1}{4}}} = 4\].

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP