Câu hỏi:

30/11/2022 4,638

Cho hàm số \(y = {\cot ^2}\frac{x}{4}\). Khi đó nghiệm của phương trình \(y' = 0\) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn B.

Ta có: \(y' = {\left( {{{\cot }^2}\frac{x}{4}} \right)^\prime } = 2\cot \frac{x}{4}{\left( {\cot \frac{x}{4}} \right)^\prime } = \frac{1}{2}\cot \frac{x}{4}\left( {1 + {{\cot }^2}\frac{x}{4}} \right)\)

Mà: \(y' = 0 \Leftrightarrow \frac{1}{2}\cot \frac{x}{4}\left( {1 + {{\cot }^2}\frac{x}{4}} \right) \Leftrightarrow \cot \frac{x}{4} = 0 \Leftrightarrow \frac{x}{4} = \frac{\pi }{2} + k\pi \Leftrightarrow x = 2\pi + k4\pi ,\,\,k \in \mathbb{Z}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Áp dụng bảng công thức đạo hàm của hàm số hợp Media VietJack:

Chọn B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP